▀ Features and Functionality - Optional Enhanced Feature Software
Inter-Chassis Session Recovery
Use of Interchassis Session Recovery requires that a valid license key be installed. Contact your local Sales or Support
representative for information on how to obtain a license.
The ASR 5x00 provides industry leading carrier class redundancy. The systems protects against all single points of
failure (hardware and software) and attempts to recover to an operational state when multiple simultaneous failures
occur.
The system provides several levels of system redundancy:
Under normal N+1 PSC/PSC2 hardware redundancy, if a catastrophic packet processing card failure occurs all
affected calls are migrated to the standby packet processing card if possible. Calls which cannot be migrated
are gracefully terminated with proper call-termination signaling and accounting records are generated with
statistics accurate to the last internal checkpoint
If the Session Recovery feature is enabled, any total PSC/PSC2 failure will cause a PSC switchover and all
established sessions for supported call-types are recovered without any loss of session.
Even though Cisco provides excellent intra-chassis redundancy with these two schemes, certain catastrophic failures
which can cause total chassis outages, such as IP routing failures, line-cuts, loss of power, or physical destruction of the
chassis, cannot be protected by this scheme. In such cases, the MME Inter-Chassis Session Recovery feature provides
geographic redundancy between sites. This has the benefit of not only providing enhanced subscriber experience even
during catastrophic outages, but can also protect other systems such as the RAN from subscriber re-activation storms.
The Interchassis Session Recovery feature allows for continuous call processing without interrupting subscriber
services. This is accomplished through the use of redundant chassis. The chassis are configured as primary and backup
with one being active and one in recovery mode. A checkpoint duration timer is used to control when subscriber data is
sent from the active chassis to the inactive chassis. If the active chassis handling the call traffic goes out of service, the
inactive chassis transitions to the active state and continues processing the call traffic without interrupting the subscriber
session. The chassis determines which is active through a propriety TCP-based connection called a redundancy link.
This link is used to exchange Hello messages between the primary and backup chassis and must be maintained for
proper system operation.
Interchassis Communication
Chassis configured to support Interchassis Session Recovery communicate using periodic Hello messages.
These messages are sent by each chassis to notify the peer of its current state. The Hello message contains
information about the chassis such as its configuration and priority. A dead interval is used to set a time limit
for a Hello message to be received from the chassis' peer. If the standby chassis does not receive a Hello
message from the active chassis within the dead interval, the standby chassis transitions to the active state. In
situations where the redundancy link goes out of service, a priority scheme is used to determine which chassis
processes the session. The following priority scheme is used:
router identifier
chassis priority
SPIO MAC address
Checkpoint Messages
Checkpoint messages are sent from the active chassis to the inactive chassis. Checkpoint messages are sent at
specific intervals and contain all the information needed to recreate the sessions on the standby chassis, if that
chassis were to become active. Once a session exceeds the checkpoint duration, checkpoint data is collected on
the session. The checkpoint parameter determines the amount of time a session must be active before it is
included in the checkpoint message.
▄ Cisco ASR 5x00 Packet Data Network Gateway Administration Guide
80
PDN Gateway Overview