Page 4
Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
Page 5
In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Page 6
Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
Table of contents Table of contents Section 1 Introduction......................43 This manual..............................43 Intended audience..........................43 Product documentation........................44 1.3.1 Product documentation set......................44 1.3.2 Document revision history....................... 45 1.3.3 Related documents..........................45 Document symbols and conventions....................46 1.4.1 Symbols..............................46 1.4.2 Document conventions........................47 IEC61850 edition 1 / edition 2 mapping.................... 48 Section 2 Available functions....................
Page 8
Table of contents 5.1.2 Settings..............................83 Local HMI signals............................ 83 5.2.1 Identification............................83 5.2.2 Function block............................ 84 5.2.3 Signals..............................84 Basic part for LED indication module....................84 5.3.1 Identification............................84 5.3.2 Function block............................ 85 5.3.3 Signals..............................85 5.3.4 Settings..............................86 LCD part for HMI function keys control module................86 5.4.1 Identification............................
Page 36
Table of contents 18.2 Communication protocol diagnostics.................... 1113 18.3 DNP3 protocol............................1114 18.4 IEC 61850-8-1 communication protocol..................1114 18.4.1 Functionality............................ 1114 18.4.2 Communication interfaces and protocols.................1115 18.4.3 Settings.............................1115 18.4.4 Technical data..........................1116 18.4.5 Generic communication function for Single Point indication SPGAPC, SP16GAPC...1116 18.4.5.1 Functionality..........................1116 18.4.5.2...
Page 38
Table of contents 18.8.7.5 Settings............................1170 18.8.8 Supervison status for IEC 60870-5-103 I103SUPERV...............1170 18.8.8.1 Functionality..........................1170 18.8.8.2 Identification..........................1171 18.8.8.3 Function block..........................1171 18.8.8.4 Signals............................1171 18.8.8.5 Settings............................1171 18.8.9 Status for user defined signals for IEC 60870-5-103 I103USRDEF........1172 18.8.9.1 Functionality..........................1172 18.8.9.2 Identification..........................
Page 39
Table of contents 18.8.15 IED commands with position for IEC 60870-5-103 I103POSCMDV........1181 18.8.15.1 Functionality..........................1181 18.8.15.2 Identification..........................1181 18.8.15.3 Function block..........................1181 18.8.15.4 Signals............................1181 18.8.15.5 Settings............................1181 18.8.16 Operation principle ........................1182 18.8.16.1 General............................1182 18.8.16.2 Communication ports........................ 1191 18.8.17 Technical data..........................1191 18.9 Horizontal communication via GOOSE for interlocking GOOSEINTLKRCV......
Page 40
Table of contents 18.14.1 Identification...........................1203 18.14.2 Functionality........................... 1203 18.14.3 Function block..........................1203 18.14.4 Signals.............................. 1203 18.14.5 Settings............................1204 18.14.6 Operation principle ........................1204 18.15 GOOSE VCTR configuration for send and receive GOOSEVCTRCONF........1205 18.15.1 Identification..........................1205 18.15.2 Settings............................1205 18.16 GOOSE voltage control receiving block GOOSEVCTRRCV............1205 18.16.1 Identification..........................
Page 45
Table of contents 22.2.14 Optical ethernet module (OEM)....................1323 22.2.14.1 Introduction..........................1323 22.2.14.2 Functionality..........................1323 22.2.14.3 Design............................1323 22.2.14.4 Technical data..........................1324 22.2.15 Line data communication module (LDCM)................1324 22.2.15.1 Introduction..........................1324 22.2.15.2 Design............................1325 22.2.15.3 Technical data..........................1326 22.2.16 Galvanic X.21 line data communication (X.21-LDCM).............. 1326 22.2.16.1 Introduction..........................
Page 46
Table of contents 22.4.3 Wall mounting..........................1346 22.4.3.1 Overview............................1346 22.4.3.2 Mounting procedure for wall mounting.................1346 22.4.3.3 How to reach the rear side of the IED..................1347 22.4.4 Side-by-side 19” rack mounting....................1348 22.4.4.1 Overview............................1348 22.4.4.2 Mounting procedure for side-by-side rack mounting............1348 22.4.4.3 IED mounted with a RHGS6 case.....................
Page 47
Table of contents 24.2 Labels on injection equipment......................1375 Section 25 Connection diagrams..................1379 Section 26 Inverse time characteristics................1381 26.1 Application............................1381 26.2 Principle of operation........................1383 26.2.1 Mode of operation......................... 1383 26.3 Inverse characteristics........................1388 Section 27 Glossary.......................1417 Technical manual...
1MRK 502 066-UUS B Section 1 Introduction Section 1 Introduction This manual GUID-AB423A30-13C2-46AF-B7FE-A73BB425EB5F v19 The technical manual contains operation principle descriptions, and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
Section 1 1MRK 502 066-UUS B Introduction Product documentation 1.3.1 Product documentation set GUID-3AA69EA6-F1D8-47C6-A8E6-562F29C67172 v15 Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual Cyber security deployment guideline IEC07000220-4-en.vsd IEC07000220 V4 EN-US Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
1MRK 502 066-UUS B Section 1 Introduction The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for the monitoring, controlling and setting of the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.
1MRK 502 066-UUS B Section 1 Introduction performance leading to personal injury or death. It is important that the user fully complies with all warning and cautionary notices. 1.4.2 Document conventions GUID-96DFAB1A-98FE-4B26-8E90-F7CEB14B1AB6 v8 • Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
Section 1 1MRK 502 066-UUS B Introduction Illustrations are used as an example and might show other products than the one the manual describes. The example that is illustrated is still valid. IEC61850 edition 1 / edition 2 mapping GUID-C5133366-7260-4C47-A975-7DBAB3A33A96 v2 Table 1: IEC61850 edition 1 / edition 2 mapping Function block name...
1MRK 502 066-UUS B Section 2 Available functions Section 2 Available functions Main protection functions GUID-66BAAD98-851D-4AAC-B386-B38B57718BD2 v12.1.1 Table 2: Example of quantities = number of basic instances = option quantities 3-A03 = optional function included in packages A03 (refer to ordering details) IEC 61850 ANSI Function description...
1MRK 502 066-UUS B Section 2 Available functions IEC 61850 ANSI Function description REG670 (Customized) OEXPVPH Overexcitation protection VDCPTOV Voltage differential protection STEFPHIZ 59THD 100% stator earth fault protection, 3rd harmonic based LOVPTUV Loss of voltage check Frequency protection SAPTUF Underfrequency protection SAPTOF Overfrequency protection...
Page 66
Section 2 1MRK 502 066-UUS B Available functions IEC 61850 ANSI Function description Generator REG670 SLGAPC Logic rotating switch for function selection and LHMI presentation VSGAPC Selector mini switch DPGAPC Generic communication function for Double Point indication SPC8GAPC Single point generic control 8 signals AUTOBITS AutomationBits, command function for DNP3.0...
Page 67
1MRK 502 066-UUS B Section 2 Available functions IEC 61850 ANSI Function description Generator REG670 ANDQT, Configurable logic blocks Q/T (see Table 4) 0–1 INDCOMBSPQT, INDEXTSPQT, INVALIDQT, INVERTERQT, ORQT, PULSETIMERQT, RSMEMORYQT, SRMEMORYQT, TIMERSETQT, XORQT AND, GATE, INV, Extension logic package (see Table 5) 0–1 LLD, OR, PULSETIMER,...
Page 68
Section 2 1MRK 502 066-UUS B Available functions IEC 61850 ANSI Function description Generator REG670 SSIMG Gas medium supervision SSIML Liquid medium supervision SSCBR Circuit breaker monitoring 0-12 I103MEAS Measurands for IEC 60870-5-103 I103MEASUSR Measurands user defined signals for IEC 60870-5-103 I103AR Function status auto-recloser for IEC...
1MRK 502 066-UUS B Section 2 Available functions Table 4: Total number of instances for configurable logic blocks Q/T Configurable logic blocks Q/T Total number of instances ANDQT INDCOMBSPQT INDEXTSPQT INVALIDQT INVERTERQT ORQT PULSETIMERQT RSMEMORYQT SRMEMORYQT TIMERSETQT XORQT Table 5: Total number of instances for extended logic package Extended configurable logic block Total number of instances...
Page 70
Section 2 1MRK 502 066-UUS B Available functions IEC 61850 ANSI Function description Generator REG670 (Customized) RS485GEN RS485 DNPGEN DNP3.0 communication general protocol DNPGENTCP DNP3.0 communication general TCP protocol CHSERRS485 DNP3.0 for EIA-485 communication protocol CH1TCP, CH2TCP, DNP3.0 for TCP/IP communication protocol CH3TCP, CH4TCP CHSEROPT DNP3.0 for TCP/IP and EIA-485 communication...
1MRK 502 066-UUS B Section 2 Available functions IEC 61850 ANSI Function description Generator REG670 (Customized) Process bus communication IEC 61850-9-2 IEC 62439-3 parallel redundancy protocol Remote communication Binary signal transfer receive/transmit 6/36 Transmission of analog data from LDCM Receive binary status from remote LDCM 6/3/3 1) Only included for 9-2LE products Basic IED functions...
Page 72
Section 2 1MRK 502 066-UUS B Available functions IEC 61850 or function Description name SPACOMMMAP SPA communication mapping SPATD Date and time via SPA protocol DOSFRNT Denial of service, frame rate control for front port DOSLANAB Denial of service, frame rate control for OEM port AB DOSLANCD Denial of service, frame rate control for OEM port CD DOSSCKT...
1MRK 502 066-UUS B Section 3 Analog inputs Section 3 Analog inputs SEMOD55010-1 v3 Introduction SEMOD55003-5 v10 Analog input channels must be configured and set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
Page 74
Section 3 1MRK 502 066-UUS B Analog inputs Name Type Description CH6(I) STRING Analog current input 6 CH7(I) STRING Analog current input 7 CH8(I) STRING Analog current input 8 CH9(I) STRING Analog current input 9 CH10(I) STRING Analog current input 10 CH11(I) STRING Analog current input 11...
Page 75
1MRK 502 066-UUS B Section 3 Analog inputs PID-3923-OUTPUTSIGNALS v5 Table 11: TRM_7I_5U Output signals Name Type Description STATUS BOOLEAN Analog input module status CH1(I) STRING Analogue current input 1 CH2(I) STRING Analog current input 2 CH3(I) STRING Analog current input 3 CH4(I) STRING Analog current input 4...
Section 3 1MRK 502 066-UUS B Analog inputs Name Type Description CH3(I) STRING Analog current input 3 CH4(I) STRING Analog current input 4 CH5(I) STRING Analog current input 5 CH6(I) STRING Analog current input 6 CH7(I) STRING Analog current input 7 CH8(I) STRING Analog current input 8...
Page 77
1MRK 502 066-UUS B Section 3 Analog inputs PID-3920-SETTINGS v5 Table 15: TRM_12I Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
Page 78
Section 3 1MRK 502 066-UUS B Analog inputs Name Values (Range) Unit Step Default Description CT_WyePoint11 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec11 1 - 10 Rated CT secondary current CTprim11 1 - 99999 3000 Rated CT primary current CT_WyePoint12 FromObject ToObject...
Page 79
1MRK 502 066-UUS B Section 3 Analog inputs Name Values (Range) Unit Step Default Description VTsec10 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim10 0.05 - 2000.00 0.05 400.00 Rated VT primary voltage VTsec11 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim11...
Page 80
Section 3 1MRK 502 066-UUS B Analog inputs PID-3923-SETTINGS v5 Table 18: TRM_7I_5U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
Page 81
1MRK 502 066-UUS B Section 3 Analog inputs PID-3924-SETTINGS v5 Table 19: TRM_9I_3U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
Page 82
Section 3 1MRK 502 066-UUS B Analog inputs Name Values (Range) Unit Step Default Description VTprim11 0.05 - 2000.00 0.05 400.00 Rated VT primary voltage VTsec12 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim12 0.05 - 2000.00 0.05 400.00 Rated VT primary voltage PID-6598-SETTINGS v4...
Section 3 1MRK 502 066-UUS B Analog inputs PID-3923-MONITOREDDATA v4 Table 25: TRM_7I_5U Monitored data Name Type Values (Range) Unit Description STATUS BOOLEAN 0=Ok Analog input module status 1=Error PID-3924-MONITOREDDATA v4 Table 26: TRM_9I_3U Monitored data Name Type Values (Range) Unit Description STATUS...
1MRK 502 066-UUS B Section 3 Analog inputs Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line, transformer, etc e.g. P, Q, I e.g. P, Q, I Measured quantity is Measured quantity is positive when flowing positive when flowing...
Page 86
Section 3 1MRK 502 066-UUS B Analog inputs Description Value Voltage inputs **) Rated voltage U 110 or 220 V Operating range 0 - 340 V Thermal withstand 450 V for 10 s 420 V continuously Burden < 20 mVA at 110 V <...
1MRK 502 066-UUS B Section 4 Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter GUID-AE43976C-E966-484C-AF39-89B2B12F56DC v5 The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
Section 4 1MRK 502 066-UUS B Binary input and output modules 4.1.3.2 Setting parameters for binary input/output module PID-4050-SETTINGS v2 Table 32: IOMIN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Binary input/output module in operation Enabled (On) or not (Off) DebounceTime...
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI 5.3.2 Function block GUID-BDB5797F-F27E-4FEE-9FDB-1C9E2F572BB6 v3 LEDGEN BLOCK NEWIND RESET IEC09000321-1-en.vsd IEC09000321 V1 EN-US Figure 7: LEDGEN function block GRP1_LED1 ^HM1L01R ^HM1L01Y ^HM1L01G IEC09000322 V1 EN-US Figure 8: GRP1_LED1 function block The GRP1_LED1 function block is an example. The 15 LEDs in each of the three groups have a similar function block.
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI 5.3.4 Settings PID-4114-SETTINGS v5 Table 39: LEDGEN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Operation Disabled/Enabled Enabled tRestart 0.0 - 100.0 Defines the disturbance length t_MaxTripDelay 0.1 - 100.0 Maximum time for the definition of a...
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Only the function block for the first button is shown above. There is a similar block for every function key button. 5.4.3 Signals PID-1657-INPUTSIGNALS v16 Table 41: FNKEYMD1 Input signals Name Type Default Description...
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI Operation principle 5.5.1 Local HMI AMU0600442 v14 ANSI13000239-2-en.vsd ANSI13000239 V2 EN-US Figure 10: Local human-machine interface The LHMI of the IED contains the following elements: • Keypad • Display (LCD) • LED indicators •...
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI 5.5.1.1 Keypad AMU0600428 v17 The LHMI keypad contains push-buttons which are used to navigate in different views or menus. The push-buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.
Page 96
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI ANSI15000157-1-en.vsdx ANSI15000157 V1 EN-US Figure 11: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port 1...5 Function button Close Open Escape Left Down Right Enter Remote/Local Uplink LED Not in use Multipage Menu...
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Communication port Programmable indication LEDs IED status LEDs 5.5.1.2 Display GUID-55739D4F-1DA5-4112-B5C7-217AAF360EA5 v10 The LHMI includes a graphical monochrome liquid crystal display (LCD) with a resolution of 320 x 240 pixels. The character size can vary. The display view is divided into four basic areas.
Page 98
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots. •...
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI IEC13000281-1-en.vsd GUID-C98D972D-D1D8-4734-B419-161DBC0DC97B V1 EN-US Figure 14: Function button panel The indication LED panel shows on request the alarm text labels for the indication LEDs. Three indication LED pages are available. IEC13000240-1-en.vsd GUID-5157100F-E8C0-4FAB-B979-FD4A971475E3 V1 EN-US Figure 15: Indication LED panel...
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI There are 15 programmable indication LEDs on the front of the LHMI. Each LED can indicate three states with the colors: green, yellow and red. The texts related to each three-color LED are divided into three panels.
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI • Green LED: unlit > no power; blinking > startup or abnormal situation (IED is not in service); steady > IED is in service • Yellow LED: unlit > no attention required; blinking > IED is in Testmode (IED is not in normal service);...
Page 102
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI operated from an external push button or a function button. The function is positive edge triggered, not level triggered. This means that even if the button is continuously pressed, the acknowledgment/reset only affects indications active at the moment when the button is first pressed.
Page 103
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Activating signal IEC01000228_2_en.vsd IEC01000228 V2 EN-US Figure 17: Operating Sequence 1 (Follow-S) GUID-107FE952-3B4C-4C01-831A-3147E652327C v3 If inputs for two or more colors are active at the same time to the same LED, the priority color it shows is in accordance with the color described above.
Page 104
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI The sequence described below is valid only if the same function block is used for all three colour LEDs. When an acknowledgment is performed, all indications that appear before the indication with higher priority has been reset, will be acknowledged, independent of if the low priority indication appeared before or after acknowledgment.
Page 105
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000315-1-en.vsd IEC09000315 V1 EN-US Figure 22: Operating sequence 3, three colors involved, alternative 2 Sequence 4 (LatchedAck-S-F) SEMOD56072-64 v1 This sequence has the same functionality as sequence 3, but steady and flashing light have been alternated.
Page 106
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal RED Reset IEC09000316_1_en.vsd IEC09000316 V1 EN-US Figure 24: Operating sequence 5, two colors Sequence 6 LatchedReset-S SEMOD56072-75 v4 Sequence 6 (LatchedReset-S), are automatically In this mode all activated LEDs, which are set to Sequence 6 reset at a new disturbance when activating any input signal for other LEDs set to LatchedReset-S.
Page 107
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN-US Figure 26: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 27 shows the timing diagram when a new indication appears after the first one has reset tRestart has elapsed.
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN-US Figure 28: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality GUID-BED38E9A-C90D-4B7F-AA20-42821C4F6A1C v3...
Page 109
1MRK 502 066-UUS B Section 5 Local Human-Machine-Interface LHMI Input value Output value IEC09000330-2-en.vsd IEC09000330 V2 EN-US Figure 29: Sequence diagram for setting OFF TOGGLE Setting In this mode the output toggles each time the function key has been pressed for more than 500ms.
Page 110
Section 5 1MRK 502 066-UUS B Local Human-Machine-Interface LHMI Input function GUID-8EA4AE21-7A74-403A-84AE-D5CEF9292A63 v2 All function keys work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
Page 112
Section 6 1MRK 502 066-UUS B Differential protection two-winding power transformer with unconnected delta tertiary winding xx05000050_ansi.vsd ANSI05000050 V1 EN-US two–winding power transformer with two circuit breakers on one side xx05000051_ansi.vsd ANSI05000051 V1 EN-US two–winding power transformer with two circuit breakers and two CT-sets on both sides Three-winding applications xx05000052_ansi.vsd...
Page 113
1MRK 502 066-UUS B Section 6 Differential protection xx05000053_ansi.vsd ANSI05000053 V1 EN-US three–winding power transformer with two circuit breakers and two CT-sets on one side xx05000057_ansi.vsd ANSI05000057 V1 EN-US Autotransformer with two circuit breakers and two CT-sets on two out of three sides Figure 32: CT group arrangement for differential protection...
Page 116
Section 6 1MRK 502 066-UUS B Differential protection PID-6623-OUTPUTSIGNALS v2 Table 46: T2WPDIF (87T) Output signals Name Type Description TRIP BOOLEAN General, common trip signal TRIPRES BOOLEAN Trip signal from restrained differential protection TRIPUNRE BOOLEAN Trip signal from unrestrained differential protection TRNSUNR BOOLEAN Trip signal from unrestrained negative sequence differential...
Page 117
1MRK 502 066-UUS B Section 6 Differential protection PID-6757-INPUTSIGNALS v1 Table 47: T3WPDIF (87T) Input signals Name Type Default Description I3PW1CT1 GROUP Three phase winding primary CT1 SIGNAL I3PW1CT2 GROUP Three phase winding primary CT2 SIGNAL I3PW2CT1 GROUP Three phase winding secondary CT1 SIGNAL I3PW2CT2 GROUP...
Section 6 1MRK 502 066-UUS B Differential protection Name Type Description BLK2H_C BOOLEAN Second harmonic block signal, phase C BLK5H BOOLEAN Common fifth harmonic block signal from any phase BLK5H_A BOOLEAN Fifth harmonic block signal, phase A BLK5H_B BOOLEAN Fifth harmonic block signal, phase B BLK5H_C BOOLEAN Fifth harmonic block signal, phase C...
Page 119
1MRK 502 066-UUS B Section 6 Differential protection Name Values (Range) Unit Step Default Description NegSeqDiffEn Disabled Enabled Operation Off/On for neg. seq. differential Enabled protections IMinNegSeq 0.02 - 0.20 0.01 0.04 Negative sequence current must be higher than this level to be used NegSeqROA 30.0 - 120.0 60.0...
1MRK 502 066-UUS B Section 6 Differential protection Name Values (Range) Unit Step Default Description LocationOLTC1 Not Used Not Used Transformer winding where OLTC1 is Winding 1 (W1) located Winding 2 (W2) Winding 3 (W3) LowTapPosOLTC1 0 - 10 OLTC1 lowest tap position designation (e.g.
Section 6 1MRK 502 066-UUS B Differential protection PID-3713-MONITOREDDATA v6 Table 56: T3WPDIF (87T) Monitored data Name Type Values (Range) Unit Description IDMAG_A REAL Magnitude of fundamental frequency differential current, phase A IDMAG_B REAL Magnitude of fundamental frequency differential current, phase B IDMAG_C REAL Magnitude of fundamental frequency...
1MRK 502 066-UUS B Section 6 Differential protection reference side of the power transformer is performed by pre-programmed coefficient matrices, which depends on the protected power transformer transformation ratio and connection group. Once the power transformer phase shift, rated currents and voltages have been entered by the user, the differential protection is capable to calculate off-line matrix coefficients required in order to perform the on-line current comparison by means of a fixed equation.
Page 126
Section 6 1MRK 502 066-UUS B Differential protection é é ù ù é é ù ù é é ù ù é ù é I A W I A W _ _ 1 _ _ 1 ù é ù I A W _ _ 1 Vn W Vn W...
Page 127
1MRK 502 066-UUS B Section 6 Differential protection I_A_W3 is the fundamental frequency phase current in phase A on the W3 side I_B_W3 is the fundamental frequency phase current in phaseB on the W3 side I_C_W3 is the fundamental frequency phase current in phaseC on the W3 side Vn_W1 is transformer rated phase-to-phase voltage on the W1 side (setting parameter) Vn_W2...
Page 128
Section 6 1MRK 502 066-UUS B Differential protection It can be shown that the values of the matrix A, B & C coefficients (see equation and equation 2) can be pre-calculated in advance depending on the relative phase shift between the reference winding and other power transformer windings.
Page 129
1MRK 502 066-UUS B Section 6 Differential protection Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to Off Reduction set to On Matrix for winding with 150° Not applicable. Matrix on the left used. é ù leading ê ú...
Page 130
Section 6 1MRK 502 066-UUS B Differential protection where: ID_A is the fundamental frequency differential current in phase A (in W1 side primary amperes) ID_B is the fundamental frequency differential current in phase B (in W1 side primary amperes) ID_C is the fundamental frequency differential current in phase C (in W1 side primary amperes) I_A_W1...
Page 131
1MRK 502 066-UUS B Section 6 Differential protection mentioned equations. By doing this, complete on-line compensation for load tap changer movement is achieved. Differential protection will be ideally balanced for every load tap changer position and no false differential current will appear irrespective of actual load tap changer position.
Page 132
Section 6 1MRK 502 066-UUS B Differential protection the fault type. During normal through-load operation of the power transformer, the bias current is equal to the maximum load current from two (three) -power transformer windings. The magnitudes of the common bias (restrain) current expressed in HV side amperes can be read as service value from the function.
Page 133
1MRK 502 066-UUS B Section 6 Differential protection The unrestrained (that is, non-stabilized, "instantaneous") part of the differential protection is used for very high differential currents, where it should be beyond any doubt, that the fault is internal. This settable limit is constant and not proportional to the bias current. Neither harmonic, nor any other restrain is applied to this limit, which is therefore allowed to trip the power transformer instantaneously.
Page 134
Section 6 1MRK 502 066-UUS B Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en05000187-2.vsd IEC05000187 V2 EN-US Figure 36: Description of the restrained, and the unrestrained operate characteristics where: Ioperate...
Page 135
1MRK 502 066-UUS B Section 6 Differential protection Section 3: The more pronounced slope in section 3 is designed to result in a higher tolerance to substantial current transformer saturation at high through-fault currents, which may be expected in this section. The operate - restrain characteristic should be designed so that it can be expected that: •...
Page 136
Section 6 1MRK 502 066-UUS B Differential protection and where: IDNS_A is the negative sequence differential current in phase A (in W1 side primary amperes) IDNS_B is the negative sequence differential current in phase B (in W1 side primary amperes) IDNS_C is the negative sequence differential current in phase C (in W1 side primary amperes)
Page 137
1MRK 502 066-UUS B Section 6 Differential protection reference side, and put to the same magnitude reference. This is done by the matrix expression (see equation ). Operation of the internal/external fault discriminator is based on the relative position of the two phasors representing the winding one (W1) and winding two (W2) negative sequence current contributions, respectively, defined by expression shown in equation .
Page 138
Section 6 1MRK 502 066-UUS B Differential protection produce a wrong decision. This magnitude check guarantees stability of the algorithm, when the NegSeqROA represents the Relay Operate Angle, power transformer is energized. The setting which determines the boundary between the internal and external fault regions. It can be selected in a range from ±30 degrees to ±90 degrees, with a step of 0.1 degree.
Page 139
1MRK 502 066-UUS B Section 6 Differential protection "steady state" for HV side neg. seq. phasor 0.1 kA 0.2 kA 0.3 kA 0.4 kA "steady state" for LV side neg. seq. phasor Contribution to neg. seq. differential current from HV side Contribution to neg.
Page 140
Section 6 1MRK 502 066-UUS B Differential protection Dire ctiona l Compa ris on Crite rion: Inte rna l fa ult a s s e e n from the HV s ide e xcurs ion from 0 de gre e s due to CT 35 ms s a tura tion...
Page 141
1MRK 502 066-UUS B Section 6 Differential protection This logic guarantees a fast disconnection of a faulty power transformer for any internal fault. If the same fault has been classified as external, then generally, but not unconditionally, a trip command is prevented. If a fault is classified as external, the further analysis of the fault conditions is initiated.
Page 142
Section 6 1MRK 502 066-UUS B Differential protection Waveform restrain M13039-341 v4 The waveform restrain criterion is a good complement to the harmonic analysis. The waveform restrain is a pattern recognition algorithm, which looks for intervals within each fundamental power system cycle with low instantaneous differential current. This interval is often called current gap in protection literature.
Page 143
1MRK 502 066-UUS B Section 6 Differential protection ensures quick differential protection tripping in cases where a transformer is energized with an internal fault (for example, forgotten grounding on transformer LV side). Operation of this feature is based on the fact that a current gap (term current gap is explained under waveblock feature above) will exist within the first power system cycle when healthy power transformer is energized.
Section 6 1MRK 502 066-UUS B Differential protection tOCTResetDelay ). This is to prevent an eventual mal-operation which is also defined by a setting ( after the reconnection of the previously open CT secondary circuit. The open CT algorithm provides detailed information about the location of the defective CT secondary circuit.
Page 145
1MRK 502 066-UUS B Section 6 Differential protection Differential function Trafo Data ID_A Instantaneous (sample based) Differential current, phase A ID_B Instantaneous (sample based) Differential current, phase B ID_C Instantaneous (sample based) Differential current, phase C IDMAG_NS Negative sequence diff current &...
Page 146
Section 6 1MRK 502 066-UUS B Differential protection fundamental frequency differential currents and at the same time from the common bias current. Calculates three instantaneous differential currents. They are used for harmonic, and waveform analysis. Instantaneous differential currents are useful for post-fault analysis using disturbance recording Calculates negative-sequence differential current.
Page 148
Section 6 1MRK 502 066-UUS B Differential protection PU_A PU_B PICKUP PU_C BLK2H_A BLK2H_B BLK2H BLK2H_C BLK5H_A BLK5H_B BLK5H BLK5H_C BLKWAV_A BLKWAV_B BLKWAV BLKWAV_C en05000279_ansi.vsd ANSI05000279 V1 EN-US Figure 45: Transformer differential protection internal grouping of logical signals Logic in figures 42, 43, can be summarized as follows: The three fundamental frequency differential currents are applied in a phase-wise manner to two limits.
1MRK 502 066-UUS B Section 6 Differential protection that the cross block signals from the other two phases B and C is not activated to obtain a trip on the TRIPRES_A output signal in figure 42) All pickup and blocking conditions are available as phase segregated as well as common (that is three-phase) signals.
Section 6 1MRK 502 066-UUS B Differential protection Function Range or value Accuracy *Trip time at 0 to 10 x Idunre, Min. = 5 ms unrestrained function Max. = 15 ms *Reset time at 10 x Idunre to 0, Min. = 15 ms unrestrained function Max.
Section 6 1MRK 502 066-UUS B Differential protection 6.2.6 Monitored data PID-6990-MONITOREDDATA v1 Table 62: HZPDIF (87) Monitored data Name Type Values (Range) Unit Description MEASVOLT REAL Measured RMS voltage on CT secondary side 6.2.7 Operation principle IP14242-1 v2 M13075-3 v11 High impedance protection system is a simple technique which requires that all CTs, used in the protection scheme, have relatively high knee point voltage, similar magnetizing characteristic and the same ratio.
1MRK 502 066-UUS B Section 6 Differential protection It is of utmost importance to insure that only one earthing point exists in such protection scheme. shows the setting (stabilizing) resistor RS. shows the over-current measuring element. The series connection of stabilizing resistor and over-current element is designated as measuring branch.
Section 6 1MRK 502 066-UUS B Differential protection AlarmPickup 0-tAlarm AlarmPickup 0.03s en05000301_ansi.vsd ANSI05000301 V1 EN-US Figure 49: Logic diagram for 1Ph High impedance differential protection HZPDIF (87) 6.2.8 Technical data IP14246-1 v1 M13081-1 v12 Table 63: HZPDIF (87)technical data Function Range or value Accuracy...
1MRK 502 066-UUS B Section 6 Differential protection 6.3.1 Identification SEMOD158971-2 v5 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generator differential protection GENPDIF > SYMBOL-NN V1 EN-US 6.3.2 Functionality SEMOD143239-4 v10 Short circuit between the phases of the stator windings causes normally very large fault currents. The short circuit gives risk of damages on insulation, windings and stator iron core.
1MRK 502 066-UUS B Section 6 Differential protection PID-7082-OUTPUTSIGNALS v1 Table 65: GENPDIF (87G) Output signals Name Type Description TRIP BOOLEAN General, common trip signal TRIPRES BOOLEAN Trip signal from restrained differential protection TRIPUNRE BOOLEAN Trip signal from unrestrained differential protection TRNSUNR BOOLEAN Trip signal from unrestrained negative sequence differential...
Page 158
Section 6 1MRK 502 066-UUS B Differential protection Table 67: GENPDIF (87G) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled IdMin 0.05 - 1.00 0.01 0.25 Section 1 sensitivity, multiple of generator rated current IdUnre 1.00 - 50.00...
1MRK 502 066-UUS B Section 6 Differential protection 6.3.6 Monitored data PID-3551-MONITOREDDATA v6 Table 69: GENPDIF (87G) Monitored data Name Type Values (Range) Unit Description IDMAG_A REAL Fund. freq. differential current, phase A; in primary A IDMAG_B REAL Fund. freq. differential current, phase B; in primary A IDMAG_C REAL...
Section 6 1MRK 502 066-UUS B Differential protection they develop into more serious faults) by the "usual" differential protection based only on operate- restrain characteristic. GENPDIF (87G) is using fundamental frequency phase current phasors and negative sequence current phasors. These quantities are derived outside the differential protection function block, in the general pre-processing blocks.
Page 161
1MRK 502 066-UUS B Section 6 Differential protection Idiff ANSI0700018_3_en.vsd ANSI07000018 V3 EN-US Figure 52: Internal fault External fault: IAn = - IAt Idiff = 0 en07000019-2_ansi.vsd ANSI07000019 V2 EN-US Figure 53: External fault Generator differential protection GENPDIF (87G) function uses two mutually independent characteristics to which magnitudes of the three fundamental frequency RMS differential currents are compared at each execution of the differential protection function.
Page 162
Section 6 1MRK 502 066-UUS B Differential protection UnrestrainedLimit ), is a constant, not proportional dependent on the bias (restrain) setting current. No harmonic or any other restrain is applied to this limit, which is, therefore, called the unrestrained limit. The reset ratio of the unrestrained characteristic is equal to 0.95. The stabilized differential protection applies a differential (operate) current, and the common bias (restrain) current, on the operate-restrain characteristic, as shown in figure 55.
Page 163
1MRK 502 066-UUS B Section 6 Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 TempIdMin IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en06000637.vsd IEC06000637 V2 EN-US Figure 55: Operate-restrain characteristic OperDCBiasing is set GENPDIF (87G) can also be temporarily ‘desensitized’...
Section 6 1MRK 502 066-UUS B Differential protection 6.3.7.3 Supplementary criteria SEMOD155649-53 v2.1.1 To relieve the burden of constructing an exact optimal operate-restrain characteristic, two special features supplement the basic stabilized differential protection function, making Generator differential protection GENPDIF (87G) a very reliable one. The supplementary criteria are: •...
Page 165
1MRK 502 066-UUS B Section 6 Differential protection in the range ±30° to ±90°, with a step of 1°. The default value is ±60°. The default setting, ±60°, favors somewhat security in comparison to dependability. Magnitudes of both negative-sequence currents which are to be compared as to their phase positions in the complex plane must be high enough so that one can be sure that they are due to a IMinNegSeq is settable in the range [0.02 –...
Section 6 1MRK 502 066-UUS B Differential protection Sensitive negative sequence differential protection SEMOD155649-80 v2.1.1 The difference from the unrestrained negative sequence differential protection, described above, is that the sensitive one only operates without any pickup signal or harmonic blocking signal to be set.
1MRK 502 066-UUS B Section 6 Differential protection 6.3.7.5 Open CT detection feature GUID-BBA6C2DD-50A2-437C-8535-D61B68F3FAE4 v1 Transformer differential protection has a built-in, advanced open CT detection feature. A sudden inadvertently opened CT circuit may cause an unexpected and unwanted operation of the Transformer differential protection under normal load conditions.
Section 6 1MRK 502 066-UUS B Differential protection Output OPENCT provides instant information to indicate that an open CT circuit has been detected. Output OPENCTAL provides a time-delayed alarm that the open CT circuit has been detected. tOCTAlarmDelay . Time delay is defined by the parameter Integer output OPENCTIN provides information on the local HMI regarding which open CT circuit has been detected (1=CT input No 1;...
Page 170
Section 6 1MRK 502 066-UUS B Differential protection BLKUNRES IdUnre TRIPUNRE_A b>a IDMAG_A PU_A IBIAS BLOCK BLKRES TRIPRES_A 2nd and Harmonic Cross Block To B or C Cross Block from B or C OpCrossBlock=Yes ANSI07000020-3-en.vsd ANSI07000020 V3 EN-US Figure 58: Generator differential logic diagram 1 Internal/ Neg.Seq.
Section 6 1MRK 502 066-UUS B Differential protection Function Range or value Accuracy Impulse margin time unrestrained 10 ms typically function Trip time at 0 to 5 x IMinNegSeq Min. = 25 ms Negative sequence unrestrained Max. = 35 ms function Reset time at 5 x IMinNegSeq to 0 Min.
1MRK 502 066-UUS B Section 6 Differential protection 6.4.6 Monitored data PID-3772-MONITOREDDATA v4 Table 76: REFPDIF (87N) Monitored data Name Type Values (Range) Unit Description IRES REAL Magnitude of fundamental frequency residual current REAL Magnitude of fundamental frequency ground current IBIAS REAL Magnitude of the bias current...
Page 176
For an external ground fault (Figure 64), the residual current 3I and the neutral current I have equal magnitude, but they are seen within the IED as 180 degrees out-of-phase if the current transformers are connected as in Figure 64, which is the ABB recommended Technical manual...
Figure 62, which is the orientation recommended by ABB. The magnitudes of the two currents may be different, dependent on the magnitudes of zero sequence impedances of both sides. No current can flow towards the power system, if the only point where the system is grounded, is at the protected power transformer.
Section 6 1MRK 502 066-UUS B Differential protection The differential protection REFPDIF (87N) calculates a differential current and a bias current. In case of internal ground faults, the differential current is theoretically equal to the total ground fault current. The bias current is supposed to give stability to REFPDIF(87N). The bias current is a measure of how high the currents are and how difficult the conditions are under which the CTs operate.
Section 6 1MRK 502 066-UUS B Differential protection low impedance (REFPDIF87N) must remain stable during an external fault, and immediately after the fault has been cleared by some other protection. For an external ground faults with no CT saturation, the residual current in the lines (3I ) and the neutral current (I in Figure 64) are theoretically equal in magnitude and are 180 degrees out-of-...
1MRK 502 066-UUS B Section 6 Differential protection sensitivity Idmin. Any search for an external fault is aborted if trip request counter is greater than zero. As long as the external fault persists, an additional temporary trip condition is introduced. This means that REFPDIF (87N) is temporarily desensitized.
Section 7 1MRK 502 066-UUS B Impedance protection Forward operation Reverse operation en05000034.vsd IEC05000034 V1 EN-US Figure 67: Typical quadrilateral distance protection zone with Phase selection with load encroachment function FDPSPDIS (21) activated The independent measurement of impedance for each fault loop together with a sensitive and reliable built-in phase selection makes the function suitable in applications with single-phase autoreclosing.
Page 186
Section 7 1MRK 502 066-UUS B Impedance protection Name Type Description PU_B BOOLEAN Pickup signal from phase B PU_C BOOLEAN Pickup signal from phase C PHPUND BOOLEAN Non-directional pickup, issued from any selected phase or loop PID-3650-INPUTSIGNALS v5 Table 81: ZMQAPDIS (21) Input signals Name Type...
1MRK 502 066-UUS B Section 7 Impedance protection PID-3545-OUTPUTSIGNALS v4 Table 84: ZDRDIR (21D) Output signals Name Type Description STDIRCND INTEGER Binary coded directional information per measuring loop 7.1.5 Settings GUID-62142086-79A9-46FF-A14F-BA0CDD6B6466 v1 Signals and settings for ZMQPDIS are valid for zone 1 while signals and settings for ZMQAPDIS are valid for zone 2 - 5 PID-3651-SETTINGS v5 Table 85: ZMQPDIS (21) Group settings (basic)
Page 188
Section 7 1MRK 502 066-UUS B Impedance protection Table 86: ZMQPDIS (21) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups PID-3650-SETTINGS v5 Table 87: ZMQAPDIS (21) Group settings (basic) Name Values (Range)
Section 7 1MRK 502 066-UUS B Impedance protection Figure presents an outline of the different measuring loops for up to five, impedance- measuring zones. There are 3 to 5 zones depending on product type and variant. Zone 1 A- B B - C Zone 2 A- B...
Page 192
Section 7 1MRK 502 066-UUS B Impedance protection (Ohm/phase) RFPP RFPP X PE X RVPE XNRV X PG X RVPG X PE X RVPE XNRV XNRV X PE X FWPE X PE X FWPE X PG X FWPG XNFW XNFW XNFW (Ohm/phase) RFPP...
Page 193
1MRK 502 066-UUS B Section 7 Impedance protection R1 + j X1 Phase-to-ground element Phase-to-ground RFPG fault in phase A (Arc + tower resistance) (R0-R1)/3 + j (X0-X1)/3 ) Phase-to-phase R1 + j X1 element A-B Phase-to-phase RFPP fault in phase A-B (Arc resistance) R1 + j X1 R1 + j X1...
Section 7 1MRK 502 066-UUS B Impedance protection Non-directional Forward Reverse IEC05000182-2-en.vsdx IEC05000182 V2 EN-US Figure 75: Directional operating modes of the distance measuring zones 7.1.7.3 Minimum operating current M16923-127 v5 The operation of Distance measuring zones, quadrilateral characteristic (ZMQPDIS,21) is blocked if the magnitude of input currents fall below certain threshold values.
Page 195
1MRK 502 066-UUS B Section 7 Impedance protection Here V and I represent the corresponding voltage and current phasors in the respective phase Ln (n = 1, 2, 3) The ground return compensation applies in a conventional manner to phase-to-ground faults (example for a phase A to ground fault) according to equation 36.
Page 196
Section 7 1MRK 502 066-UUS B Impedance protection I ) are brought from the input memory and fed to a recursive Fourier current between samples (D filter. The filter provides two orthogonal values for each input. These values are related to the loop impedance according to equation 37, ×...
1MRK 502 066-UUS B Section 7 Impedance protection The calculated values are updated each sample and compared with the set zone reach. The adaptive tripping counter counts the number of permissive tripping results. This effectively removes any influence of errors introduced by the capacitive voltage transformers or by other factors.
Section 7 1MRK 502 066-UUS B Impedance protection AngNegRes AngDir en05000722_ansi.vsd ANSI05000722 V1 EN-US Figure 76: Setting angles for discrimination of forward and reverse fault in Directional impedance quadrilateral function ZDRDIR (21D) The reverse directional characteristic is equal to the forward characteristic rotated by 180 degrees.
Page 199
1MRK 502 066-UUS B Section 7 Impedance protection Distance protection zones M13841-10 v9 The design of the distance protection zones are presented for all measuring loops: phase-to- ground as well as phase-to-phase. Phase-to-ground related signals are designated by AG, BG and CG. The phase-to-phase signals are designated by AB, BC and CA.
Page 200
Section 7 1MRK 502 066-UUS B Impedance protection PUZMPP PHSEL NDIR_AB NDIR_BC NDIR_CA NDIR_A NDIR_B NDIR_C STNDPE LOVBZ PHPUND BLOCK BLOCFUNC ANSI99000557-1-en.vsd ANSI99000557 V2 EN-US Figure 77: Conditioning by a group functional input signal PHSEL, external start condition Composition of the phase pickup signals for a case, when the zone operates in a non-directional mode, is presented in figure 78.
Page 201
1MRK 502 066-UUS B Section 7 Impedance protection NDIR_A DIR_A PU_ZMPG NDIR_B DIR_B NDIR_C PU_A DIR_C 15 ms NDIR_AB DIR_AB PU_B 15 ms NDIR_BC DIR_BC PU_C NDIR_CA 15 ms DIR_CA PU_ZMPP PICKUP 15 ms ANSI09000888-2-en.vsd ANSI09000888 V2 EN-US Figure 79: Composition of pickup signals in directional operating mode Tripping conditions for the distance protection zone one are symbolically presented in figure 80.
1MRK 502 066-UUS B Section 7 Impedance protection Function Range or value Accuracy Dynamic overreach <5% at 85 degrees measured with CVT’s and 0.5<SIR<30 Definite time delay phase- (0.000-60.000) s ±0.2% or ±40 ms whichever is greater phase and phase-ground operation Trip time 25 ms typically...
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Description REV_G BOOLEAN Ground fault detected in reverse direction NDIR_A BOOLEAN Non directional fault detected in Phase A NDIR_B BOOLEAN Non directional fault detected in Phase B NDIR_C BOOLEAN Non directional fault detected in Phase C NDIR_G BOOLEAN Non directional phase-to-ground fault detected...
Section 7 1MRK 502 066-UUS B Impedance protection Table 96: FDPSPDIS (21) Group settings (advanced) Name Values (Range) Unit Step Default Description 21 enable Disabled Enabled Operation of impedance based Enabled measurement 50/51 enable Disabled Disabled Operation of current based measurement Enabled Pickup Iph 10 - 2500...
Page 207
1MRK 502 066-UUS B Section 7 Impedance protection Residual current criteria No quadrilateral impedance characteristic. The impedance reach outside the load area is theoretically infinite. The practical reach, however, will be determined by the minimum operating current limits. Load encroachment characteristic is always active, but can be switched off by selecting a high setting.
Section 7 1MRK 502 066-UUS B Impedance protection The PHSELZ or DLECND output contains, in a similar way as DIRCND, binary coded information, in this case information about the condition for opening correct fault loop in the distance measuring element. It shall be connected to the PHSEL input on the ZMQPDIS, distance measuring block. The code built up for release of the measuring fault loops is as follows: PHSEL = AG*1+BG*2+CG*4+AB*8+BC*16+CA*32 7.2.6.1...
1MRK 502 066-UUS B Section 7 Impedance protection X (ohm/loop) Kr·(X1+XN) RFItRevPG RFItFwdPG X1+XN 60 deg RFItFwdPG R (Ohm/loop) RFItRevPG 60 deg X1+XN tan(60 deg) RFItFwdPG RFItRevPG Kr·(X1+XN) en06000396_ansi.vsd ANSI06000396 V1 EN-US Figure 83: Characteristic of FDPSPDIS (21) for phase-to-ground fault (setting parameters in italic), ohm/loop domain (directional lines are drawn as "line-dot-dot-line") Besides this, the 3I residual current must fulfil the conditions according to equation...
Page 210
Section 7 1MRK 502 066-UUS B Impedance protection Vm Vn ZPHS - × (Equation 50) EQUATION1813-ANSI V1 EN-US Vm is the leading phase voltage, Vn the lagging phase voltage and In the phase current in the lagging phase n. The operation characteristic is shown in figure 84. phase 0.5·RFltRevPP 0.5·RFltFwdPP...
1MRK 502 066-UUS B Section 7 Impedance protection INBlockPP < × (Equation 52) EQUATION2110-ANSI V1 EN-US where: IMinPUPG is the minimum operation current for ground measuring loops, 3I0BLK_PP is 3I limit for blocking phase-to-phase measuring loop and Iphmax is maximal magnitude of the phase currents. 7.2.6.3 Three-phase faults M13140-80 v4...
Section 7 1MRK 502 066-UUS B Impedance protection 7.2.6.4 Load encroachment M13140-86 v6 Each of the six measuring loops has its own load encroachment characteristic based on the corresponding loop impedance. The load encroachment functionality is always active, but can be switched off by selecting a high setting.
Page 213
1MRK 502 066-UUS B Section 7 Impedance protection PHSELZ DLECND ANSI10000099-1-en.vsd ANSI10000099 V1 EN-US Figure 87: Difference in operating characteristic depending on operation mode when load encroachment is activated When FDPSPDIS (21) is set to operate together with a distance measuring zone the resultant operate characteristic could look like in figure 88.
Page 214
Section 7 1MRK 502 066-UUS B Impedance protection Figure is valid for phase-to-ground. During a three-phase fault, or load, when the quadrilateral phase-to-phase characteristic is subject to enlargement and rotation the operate area is transformed according to figure 89. Notice in particular what happens with the resistive blinders of the "phase selection"...
1MRK 502 066-UUS B Section 7 Impedance protection IEC08000437.vsd IEC08000437 V1 EN-US Figure 90: Rotation of load characteristic for a fault between two phases There is a gain in selectivity by using the same measurement as for the quadrilateral characteristic since not all phase-to-phase loops will be fully affected by a fault between two phases.
Page 216
Section 7 1MRK 502 066-UUS B Impedance protection Residual current INMag based PhSel. 3I0Enable_PG PHPH_FLT PHG_FLT 3I0BLK_PP Imin STZPHLmn PHSLmn STZPHLm PHSLm R,X settings LEPHLm Binary to word LEPHLmn Enable 21 enable b1 – b3 word b4 – b6 IPELm IRELPE Pickup Iph PHSELZ IRELPP Pickup_N Binary to word 50/51 enable b1 – b3 DLECND word b4 – b6 Relative current ...
Page 217
1MRK 502 066-UUS B Section 7 Impedance protection protection zone and this way influence the operation of the phase-to-phase and phase-to-ground zone measuring elements, residual current and the load encroachment characteristic. Figure presents schematically the composition of non-directional phase selective signals NDIR_A (B or C).
Page 218
Section 7 1MRK 502 066-UUS B Impedance protection INDIR_A DRV_A INDIR_AB REV_A DRV_AB 15 ms INDIR_CA DRV_CA REV_G INDIR_B 15 ms DRV_B INDIR_AB REV_B 15 ms INDIR_BC INDIR_A INDIR_B DRV_BC INDIR_C PHSELZ Bool to INDIR_C INDIR_AB integer INDIR_BC DRV_C INDIR_CA INDIR_BC REV_C 15 ms...
Page 219
1MRK 502 066-UUS B Section 7 Impedance protection INDIR_A FWD_IPH DFW_A 15 ms 15 ms INDIR_AB FWD_A DFW_AB 15 ms INDIR_CA DFW_CA FWD_G INDIR_B 15 ms DFW_B FWD_B INDIR_AB 15 ms FWD_2PH INDIR_BC 15 ms 15 ms DFW_BC INDIR_C DFW_C FWD_C 15 ms INDIR_BC...
1MRK 502 066-UUS B Section 7 Impedance protection 7.2.7 Technical data M16024-1 v11 Table 98: FDPSPDIS (21) technical data Function Range or value Accuracy IBase Minimum trip current (5-500)% of ±1.0% of I at I ≤ I ±1.0% of I at I > I Reactive reach, positive (0.50–3000.00) Ω/phase ±2.5% static accuracy...
Section 7 1MRK 502 066-UUS B Impedance protection The full scheme technique provides back-up protection of power lines with high sensitivity and low requirement on remote end communication. The zones have fully independent measuring and settings, which gives high flexibility for all types of lines.
1MRK 502 066-UUS B Section 7 Impedance protection 7.3.6 Operation principle SEMOD154230-1 v2 7.3.6.1 Full scheme measurement SEMOD154224-4 v3 The execution of the different fault loops within the IED are of full scheme type, which means that each fault loop for phase-to- ground faults and phase-to-phase faults are executed in parallel for all zones.
Section 7 1MRK 502 066-UUS B Impedance protection The polarization quantities used for the mho circle are 100% memorized positive sequence voltages. This will give a somewhat less dynamic expansion of the mho circle during faults than a plain cross polarized characteristic. However, if the source impedance is high, the dynamic expansion of the mho circle might lower the security of the function too much with high loading and mild power swing conditions.
Page 227
1MRK 502 066-UUS B Section 7 Impedance protection Compensation for ground-return path for faults involving ground is done by setting the parameter KN and KNAng where KN is the magnitude of the ground-return path and KNAng is the angle of the ground-return path.
Section 7 1MRK 502 066-UUS B Impedance protection • activating of the input BLKHSIR blocks the high speed part of the algorithm for high SIR values • activating of the input BLKTRIP blocks all output signals • activating the input BLKPG blocks the phase-to-ground fault loop outputs •...
Page 229
1MRK 502 066-UUS B Section 7 Impedance protection · × comp × ß ·R en07000109_ansi.vsd ANSI07000109 V1 EN-US Figure 99: Simplified mho characteristic and vector diagram for phase A-to-B fault Offset Mho SEMOD154224-242 v4 The characteristic for offset mho is a circle where two points on the circle are the setting ZPP and ZRevPP .
Page 230
Section 7 1MRK 502 066-UUS B Impedance protection comp1 • • ß · Vcomp2 = ·ZF =V • en07000110_ansi.vsd ANSI07000110 V1 EN-US Figure 100: Simplified offset mho characteristic and voltage vectors for phase A-to-B fault. Operation occurs if 90≤β≤270. Offset mho, forward direction SEMOD154224-249 v4 When forward direction has been selected for the offset mho, an extra criteria beside the one for offset mho (90<β<270) is introduced, that is the angle φ...
Page 231
1MRK 502 066-UUS B Section 7 Impedance protection ArgNegRes ArgDir en07000111_ansi ANSI07000111 V1 EN-US Figure 101: Simplified offset mho characteristic in forward direction for phase A-to-B fault Offset mho, reverse direction SEMOD154224-265 v4 The operation area for offset mho in reverse direction is according to figure 102. The operation ArgNegRes +180°.
Page 232
Section 7 1MRK 502 066-UUS B Impedance protection ArgNegRes ϕ ArgDir ZRevPP en06000469_ansi.ep ANSI06000469 V1 EN-US Figure 102: Operation characteristic for reverse phase A-to-B fault Phase-to-ground fault SEMOD154224-283 v2 SEMOD154224-120 v5 The measuring of ground faults uses ground-return compensation applied in a conventional way. The compensation voltage is derived by considering the influence from the ground-return path.
Page 233
1MRK 502 066-UUS B Section 7 Impedance protection × Vcomp loop (Equation 57) EQUATION1793-ANSI V1 EN-US where is the polarizing voltage (memorized VA for Phase A-to- ground fault) is the loop impedance, which in general terms can be expressed loop ×...
Page 234
Section 7 1MRK 502 066-UUS B Impedance protection A· IA·ZN comp ß • loop ·ZPE Vpol ·R IA (Ref) en06000472_ansi.vsd ANSI06000472 V1 EN-US Figure 103: Simplified offset mho characteristic and vector diagram for phase A-to-ground fault Operation occurs if 90≤β≤270. Offset mho SEMOD154224-309 v5 The characteristic for offset mho at ground fault is a circle containing the two vectors from the...
Page 235
1MRK 502 066-UUS B Section 7 Impedance protection • • comp1 • ß • ZRevPE comp • • en 06000465 _ansi . vsd ANSI06000465 V1 EN-US Figure 104: Simplified offset mho characteristic and voltage vector for phase A-to-ground fault Operation occurs if 90≤β≤270. Offset mho, forward direction SEMOD154224-327 v3 In the same way as for phase-to-phase fault, selection of forward direction of offset mho will...
Page 236
Section 7 1MRK 502 066-UUS B Impedance protection ArgNegRes IA·R ArgDir en 06000466 _ansi.vsd ANSI06000466 V1 EN-US Figure 105: Simplified characteristic for offset mho in forward direction for A-to-ground fault Offset mho, reverse direction SEMOD154224-341 v4 In the same way as for offset in forward direction, the selection of offset mho in reverse direction will introduce an extra criterion for operation compare to the normal offset mho.
1MRK 502 066-UUS B Section 7 Impedance protection ArgNegRes ϕ ArgDir ZRevPE en06000470_ansi.ep ANSI06000470 V1 EN-US Figure 106: Simplified characteristic for offset mho in reverse direction for A-to-ground fault 7.3.6.5 Simplified logic diagrams GUID-22B4A410-6F8E-4569-A354-51A1F4951F79 v3 Distance protection zones The design of the distance protection zones are presented for all measuring loops: phase-to- ground as well as phase-to-phase.
Page 238
Section 7 1MRK 502 066-UUS B Impedance protection The input signal DIRCND is used to give condition for directionality for the distance measuring zones. The signal contains binary coded information for both forward and reverse direction. The zone measurement function filters out the relevant signals depending on the setting of the DirMode .
Page 239
1MRK 502 066-UUS B Section 7 Impedance protection PHG_FLT Release PU_AG PU_A PU_BG PU_CG PU_B PU_AB PU_BC PU_C PU_CA PICKUP PHPH_FLT ANSI11000217-1-en.vsd ANSI11000217 V1 EN-US Figure 108: Composition of pickup signals Tripping conditions for the distance protection zone one are symbolically presented in figure 109. Timer tPP=On 0-tPP PHPH_FLT...
1MRK 502 066-UUS B Section 7 Impedance protection Function Range or value Accuracy Trip time 22 ms typically IEC 60255-121 Reset ratio 105% typically Reset time at 0.5 to 1.5 x Min. = 30 ms Zreach Max. = 45 ms Directional impedance element for mho characteristic and additional distance protection directional function for earth faults ZDMRDIR (21D), ZDARDIR...
Section 7 1MRK 502 066-UUS B Impedance protection PID-3546-OUTPUTSIGNALS v6 Table 106: ZDMRDIR (21D) Output signals Name Type Description CURR GROUP SIGNAL Group signal for current signals to Mho function VOLT GROUP SIGNAL Group signal for voltage signals to Mho function GROUP SIGNAL Group signal for polarization voltage signals to Mho function PUFW...
Page 243
1MRK 502 066-UUS B Section 7 Impedance protection Table 110: ZDMRDIR (21D) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups PID-3564-SETTINGS v6 Table 111: ZDARDIR Group settings (basic) Name Values (Range) Unit...
Section 7 1MRK 502 066-UUS B Impedance protection 7.4.6 Monitored data PID-3546-MONITOREDDATA v5 Table 114: ZDMRDIR (21D) Monitored data Name Type Values (Range) Unit Description A_Dir INTEGER 1=Forward Direction in phase A 2=Reverse 0=No direction B_Dir INTEGER 1=Forward Direction in phase B 2=Reverse 0=No direction C_Dir...
Page 245
1MRK 502 066-UUS B Section 7 Impedance protection Phase current in phase A V1AB Voltage difference between phase A and B (B lagging A) V1ABM Memorized voltage difference between phase A and B (B lagging A) Current difference between phase A and B (B lagging A) AngDir and AngNegRes are 15 (= -15) and 115 degrees respectively (see The default settings for figure 112) and they should not be changed unless system studies show the necessity.
Page 246
Section 7 1MRK 502 066-UUS B Impedance protection The polarizing voltage is available as long as the positive-sequence voltage exceeds 5% of the set VBase , thus the directional element can use it for all unsymmetrical faults including base voltage close-in faults.
Page 247
1MRK 502 066-UUS B Section 7 Impedance protection 7.5.2 Functionality SEMOD153825-5 v7 The ability to accurately and reliably classify different types of fault so that single phase tripping and autoreclosing can be used plays an important roll in today's power systems. The phase selection function is design to accurately select the proper fault loop(s) in the distance function dependent on the fault type.
Page 248
Section 7 1MRK 502 066-UUS B Impedance protection PID-3541-OUTPUTSIGNALS v7 Table 116: FMPSPDIS (21) Output signals Name Type Description PU_A BOOLEAN Fault detected in phase A PU_B BOOLEAN Fault detected in phase B PU_C BOOLEAN Fault detected in phase C PHG_FLT BOOLEAN Ground fault detected...
Page 249
1MRK 502 066-UUS B Section 7 Impedance protection Table 119: FMPSPDIS (21) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 7.5.6 Operation principle 7.5.6.1 The phase selection function SEMOD153832-4 v3 Faulty phase identification with load encroachment for mho (FMPSPDIS, 21) function can be...
Page 250
Section 7 1MRK 502 066-UUS B Impedance protection The delta voltages ΔVA(B,C) and delta current ΔIA(B,C) are the voltage and current between sample t and sample t-1. The delta phase selector employs adaptive techniques to determine the fault type. The logic determines the fault type by summing up all phase values and dividing by the largest value.
Page 251
1MRK 502 066-UUS B Section 7 Impedance protection signal has an internal pulse timer of 100 ms. When the DELTAREL signal has disappeared the delta logic is reset. In order not to get too abrupt change, the reset is decayed in pre-defined steps. Symmetrical component based phase selector SEMOD153832-58 v3 The symmetrical component phase selector uses preprocessed calculated sequence voltages and...
Page 252
Section 7 1MRK 502 066-UUS B Impedance protection where: maxIph is the maximal current magnitude found in any of the three phases INRelPG is the setting of 3I0 limit for release of phase-to-ground measuring loop in % of IBase IBase is the global setting of the base current (A) In systems where the source impedance for zero sequence is high the change of zero sequence current may not be significant and the above detection may fail.
Page 253
1MRK 502 066-UUS B Section 7 Impedance protection ANSI06000383-3-en.vsd ANSI06000383 V3 EN-US Figure 114: Definition of fault sectors for phase-to-phase fault The phase-to-phase loop for the faulty phases will be determined if the angle between the sequence voltages V and V lies within the sector defined according to figure and the following conditions are fulfilled:...
Page 254
Section 7 1MRK 502 066-UUS B Impedance protection 80° CG sector BG sector (Ref) 200° AG sector 320° en06000384_ansi.vsd ANSI06000384 V1 EN-US Figure 115: Condition 1: Definition of faulty phase sector as angle between V and I The angle is calculated in a directional function block and gives the angle in radians as input to the and I function block.
Page 255
1MRK 502 066-UUS B Section 7 Impedance protection where: and IN are the magnitude of the negative sequence voltage and zero- sequence current (3I V2MinOp is the setting parameter for minimum operating negative sequence voltage maxIph is the maximum phase current The angle difference is phase shifted by 180 degrees if the fault is in reverse direction.
Page 256
Section 7 1MRK 502 066-UUS B Impedance protection Condition 1 and Condition 2 ⇒ Fault type The sequence phase selector is blocked when ground is not involved or if a three-phase fault is detected. Three-phase fault detection SEMOD153832-174 v4 Unless it has been categorized as a single or two-phase fault, the function classifies it as a three- phase fault if the following conditions are fulfilled: V1Level I1LowLevel...
Page 257
1MRK 502 066-UUS B Section 7 Impedance protection |<0.1 · maxIph 3I0BLK_PP |>maxIph · I2ILmax |<maxIph · where: maxIph is the maximum of the phase currents IA, IB and IC INRelPG is the setting parameter for 3I0 limit for release of phase-to-ground fault loops is the magnitude of the negative sequence current I2ILmax...
Page 258
Section 7 1MRK 502 066-UUS B Impedance protection phase identification with load encroachment for mho (FMPSPDIS, 21) function but the influence on the zone measurement can be switched Enabled/Disabledin the respective impedance measuring function. The outline of the characteristic is presented in figure 119. As illustrated, the resistive reach in forward and reverse direction and the angle of the sector is the same in all four quadrants.
1MRK 502 066-UUS B Section 7 Impedance protection The output PHSCND provides release information from the phase selection part only. DLECND provides release information from the load encroachment part only. PLECND provides release information from the phase selection part and the load encroachment part combined, that is, both parts have to issue a release at the same time (this signal is normally not used in the zone measuring element).
Page 262
Section 7 1MRK 502 066-UUS B Impedance protection PID-3649-OUTPUTSIGNALS v5 Table 122: ZMRPDIS (21) Output signals Name Type Description TRIP BOOLEAN General Trip, issued from any phase or loop TR_A BOOLEAN Trip signal from phase A TR_B BOOLEAN Trip signal from phase B TR_C BOOLEAN Trip signal from phase C...
Page 263
1MRK 502 066-UUS B Section 7 Impedance protection PID-726-INPUTSIGNALS v3 Table 125: ZDRDIR (21D) Input signals Name Type Default Description GROUP group connection for current abs 2 SIGNAL GROUP group connection for voltage abs 2 SIGNAL PID-726-OUTPUTSIGNALS v3 Table 126: ZDRDIR (21D) Output signals Name Type Description...
Page 264
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description IMinPUPP 10 - 1000 Minimum operate delta current for Phase- Phase loops IMinPUPG 10 - 1000 Minimum pickup phase current for Phase- to-ground loops IMinOpIR 5 - 1000 Minimum operate residual current for Phase-Ground loops...
Page 265
1MRK 502 066-UUS B Section 7 Impedance protection Table 130: ZMRAPDIS (21) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups PID-3545-SETTINGS v5 Table 131: ZDRDIR (21D) Group settings (basic) Name Values (Range) Unit...
Page 266
Section 7 1MRK 502 066-UUS B Impedance protection Zone 1 A- B B - C Zone 2 A- B B -C C- A Zone 3 A- B Zone 4 A- B C -A Zone 5 A- B B -C C -A Zone 6 A- B B - C...
Page 268
Section 7 1MRK 502 066-UUS B Impedance protection (Ohm/phase) RFPP R1PP RFPP X PE X RVPE XNRV X PG X RVPG X PE X RVPE XNRV XNRV X PE X FWPE X PE X FWPE X PG X FWPG XNFW XNFW XNFW X1PP...
Page 269
1MRK 502 066-UUS B Section 7 Impedance protection R1 + j X1 Phase-to-ground element Phase-to-ground RFPG fault in phase A (Arc + tower resistance) (R0-R1)/3 + j (X0-X1)/3 ) Phase-to-phase R1 + j X1 element A-B Phase-to-phase RFPP fault in phase A-B (Arc resistance) R1 + j X1 R1 + j X1...
Page 270
Section 7 1MRK 502 066-UUS B Impedance protection Non-directional Forward Reverse IEC05000182-2-en.vsdx IEC05000182 V2 EN-US Figure 126: Directional operating modes of the distance measuring zones 7.6.6.3 Minimum operating current GUID-BFD07CBE-F322-4602-A3BC-B6E8D72DB92B v1 The operation of Distance measuring zones, quadrilateral characteristic (ZMRPDIS, 21) is blocked if the magnitude of input currents fall below certain threshold values.
Page 271
1MRK 502 066-UUS B Section 7 Impedance protection Here V and I represent the corresponding voltage and current phasors in the respective phase Ln (n = 1, 2, 3) The ground return compensation applies in a conventional manner to phase-to-ground faults (example for a phase A to ground fault) according to equation 65.
Page 272
Section 7 1MRK 502 066-UUS B Impedance protection I ) are brought from the input memory and fed to a recursive Fourier current between samples (D filter. The filter provides two orthogonal values for each input. These values are related to the loop impedance according to equation 66, ×...
Page 273
1MRK 502 066-UUS B Section 7 Impedance protection The calculated values are updated each sample and compared with the set zone reach. The adaptive tripping counter counts the number of permissive tripping results. This effectively removes any influence of errors introduced by the capacitive voltage transformers or by other factors.
Page 274
Section 7 1MRK 502 066-UUS B Impedance protection AngNegRes AngDir en05000722_ansi.vsd ANSI05000722 V1 EN-US Figure 127: Setting angles for discrimination of forward and reverse fault in Directional impedance quadrilateral function ZDRDIR (21D) The reverse directional characteristic is equal to the forward characteristic rotated by 180 degrees.
Page 275
1MRK 502 066-UUS B Section 7 Impedance protection Distance protection zones GUID-CBBD5D22-7372-4C0A-B941-44A5D21EC328 v2 The design of the distance protection zones are presented for all measuring loops: phase-to- ground as well as phase-to-phase. Phase-to-ground related signals are designated by AG, BG and CG.. The phase-to-phase signals are designated by AB, BC and CA.
Page 276
Section 7 1MRK 502 066-UUS B Impedance protection Composition of the phase pickup signals for a case, when the zone operates in a non-directional mode, is presented in figure 78. NDIR_A NDIR_B PU_A NIDR_C 15ms NDIR_AB PU_B 15ms NDIR_BC PU_C NDIR_CA 15ms PICKUP...
Page 277
1MRK 502 066-UUS B Section 7 Impedance protection Timer tPP=enable PUZMPP 0-tPP BLOCFUNC 0-tPG Timer tPG=enable PUZMPG TRIP BLKTR 15 ms TR_A PU_A TR_B PU_B TR_C PU_C ANSI09000887-3-en.vsdx ANSI09000887 V3 EN-US Figure 131: Tripping logic for the distance protection zone 7.6.7 Technical data GUID-7617A215-AE7C-47CC-B189-4914F530F717 v7...
Page 278
Section 7 1MRK 502 066-UUS B Impedance protection Function Range or value Accuracy Dynamic overreach <5% at 85 degrees measured with CVT’s and 0.5<SIR<30 Definite time delay phase- (0.000-60.000) s ±0.2% or ±40 ms whichever is greater phase and phase-ground operation Trip time 25 ms typically...
Page 280
Section 7 1MRK 502 066-UUS B Impedance protection Name Type Description REV_G BOOLEAN Ground fault detected in reverse direction NDIR_A BOOLEAN Non directional fault detected in Phase A NDIR_B BOOLEAN Non directional fault detected in Phase B NDIR_C BOOLEAN Non directional fault detected in Phase C NDIR_G BOOLEAN Non directional phase-to-ground fault detected...
1MRK 502 066-UUS B Section 7 Impedance protection Table 137: FRPSPDIS (21) Group settings (advanced) Name Values (Range) Unit Step Default Description TimerPP Disabled Disabled Operation mode Disable/Enable of Zone Enabled timer, Ph-Ph 0.000 - 60.000 0.001 3.000 Time delay to trip, Ph-Ph TimerPE Disabled Disabled...
Page 282
Section 7 1MRK 502 066-UUS B Impedance protection These directional indications are based on the sector boundaries of the directional function and the impedance setting of FRPSPDIS (21) function. Their operating characteristics are illustrated in figure 133. 60° 60° 60° 60°...
Page 283
1MRK 502 066-UUS B Section 7 Impedance protection 7.7.6.1 Phase-to-ground fault GUID-37AF6C9C-852E-48D9-A307-A23F2BF6884A v1 Index PHS in images and equations reference settings for Phase selection, quadrilateral characteristic with settable angle (FRPSPDIS, 21). VA B C ( , ) IA B C ( , ) (Equation 74) EQUATION1554 V1 EN-US...
Page 284
Section 7 1MRK 502 066-UUS B Impedance protection X (ohm/loop) R1PE+RN RFRvPE RFFwPE X1+XN RFFwPE R (Ohm/loop) RFRvPE X1+XN RFFwPE RFRvPE R1PE+RN IEC09000633-1-en.vsd IEC09000633 V1 EN-US Figure 134: Characteristic of FRPSPDIS (21) for phase to fault (directional lines are drawn as "line-dot-dot-line") Besides this, the 3I residual current must fulfil the conditions according to equation...
Page 285
1MRK 502 066-UUS B Section 7 Impedance protection 7.7.6.2 Phase-to-phase fault GUID-8C41B037-72E8-42EB-A5BA-9FA20BD830DB v1 For a phase-to-phase fault, the measured impedance by FRPSPDIS (21) is according to equation 79. Vm Vn ZPHS - × (Equation 79) EQUATION1813-ANSI V1 EN-US Vm is the leading phase voltage, Vn the lagging phase voltage and In the phase current in the lagging phase n.
Page 286
Section 7 1MRK 502 066-UUS B Impedance protection < I BLK (Equation 81) EQUATION1815-ANSI V1 EN-US where: 3I0Enable_PG is the minimum operation current for forward ground measuring loops, 3I0BLK_PP is 3I limit for blocking phase-to-phase measuring loop and Iphmax is maximal magnitude of the phase currents. 7.7.6.3 Three-phase faults GUID-0CB276AE-1700-4ACB-8F90-E8E1FD670365 v1...
Page 287
1MRK 502 066-UUS B Section 7 Impedance protection 7.7.6.4 Load encroachment GUID-ABD74C3B-FF0F-45B3-BF34-D7C5FEAD62D3 v1 Each of the six measuring loops has its own load encroachment characteristic based on the corresponding loop impedance. The load encroachment functionality is always active, but can be switched off by selecting a high setting.
Page 288
Section 7 1MRK 502 066-UUS B Impedance protection PHSELZ DLECND ANSI10000099-1-en.vsd ANSI10000099 V1 EN-US Figure 138: Difference in operating characteristic depending on operation mode when load encroachment is activated When FRPSPDIS (21) is set to operate together with a distance measuring zone the resultant operate characteristic could look like in figure 139.
Page 289
1MRK 502 066-UUS B Section 7 Impedance protection "Phase selection" "quadrilateral" zone Distance measuring zone Load encroachment characteristic Directional line en05000673.vsd IEC05000673 V1 EN-US Figure 139: Operating characteristic in forward direction when load encroachment is activated Figure is valid for phase-to-ground. During a three-phase fault, or load, when the quadrilateral phase-to-phase characteristic is subject to enlargement and rotation the operate area is transformed according to figure 140.
Page 290
Section 7 1MRK 502 066-UUS B Impedance protection phase Phase selection ”Quadrilateral” zone Distance measuring zone phase IEC09000049-1-en.vsd IEC09000049 V1 EN-US Figure 140: Operating characteristic for FRPSPDIS (21) in forward direction for three-phase fault, ohm/phase domain The result from rotation of the load characteristic at a fault between two phases is presented in fig 141.
Page 291
1MRK 502 066-UUS B Section 7 Impedance protection IEC08000437.vsd IEC08000437 V1 EN-US Figure 141: Rotation of load characteristic for a fault between two phases There is a gain in selectivity by using the same measurement as for the quadrilateral characteristic since not all phase-to-phase loops will be fully affected by a fault between two phases.
Page 292
Section 7 1MRK 502 066-UUS B Impedance protection 21 enable LDEblock IMinPUPG IRELPG STPG I Enable PG 15ms DLECND Bool to integer BLOCK STPP IMinPUPG 15ms 10ms IRELPP 20ms I BLK ANSI09000149-4-en.vsd ANSI09000149 V4 EN-US Figure 142: Phase-to-phase and phase-to-ground operating conditions (residual current criteria) A special attention is paid to correct phase selection at evolving faults.
Page 293
1MRK 502 066-UUS B Section 7 Impedance protection INDIR_A INDIR_B INDIR_C PHSEL_G 15 ms IRELPG LDEblockA PHSEL_A LDEblockB 15 ms PHSEL_B LDEblockC 15 ms LDEblockAB PHSEL_C I_A & I_B 15 ms ZMAB LDEblockBC I_B & I_C INDIR_AB ZMBC INDIR_BC LDEblockCA I_C &...
Page 294
Section 7 1MRK 502 066-UUS B Impedance protection INDIR_A DRV_A INDIR_AB REV_A DRV_AB 15 ms INDIR_CA DRV_CA REV_G INDIR_B 15 ms DRV_B INDIR_AB REV_B 15 ms INDIR_BC INDIR_A INDIR_B DRV_BC INDIR_C PHSELZ Bool to INDIR_C INDIR_AB integer INDIR_BC DRV_C INDIR_CA INDIR_BC REV_C 15 ms...
Page 295
1MRK 502 066-UUS B Section 7 Impedance protection INDIR_A FWD_IPH DFW_A 15 ms 15 ms INDIR_AB FWD_A DFW_AB 15 ms INDIR_CA DFW_CA FWD_G INDIR_B 15 ms DFW_B FWD_B INDIR_AB 15 ms FWD_2PH INDIR_BC 15 ms 15 ms DFW_BC INDIR_C DFW_C FWD_C 15 ms INDIR_BC...
1MRK 502 066-UUS B Section 7 Impedance protection 7.7.7 Technical data GUID-9E13C38A-3B6D-402B-98A6-6CDA20632CE7 v4 Table 139: FRPSPDIS (21) technical data Function Range or value Accuracy (5-500)% of IBase ±1.0% of I at I ≤ I ±1.0% of I at I > I Reactive reach, positive (0.50–3000.00) Ω/phase ±2.0% static accuracy...
Page 298
Section 7 1MRK 502 066-UUS B Impedance protection The zones can operate independently of each other. Zones 3 to 5 in directional (forward or reverse) or non-directional mode. Zone1 and zone2 are designed to measure in forward direction only, while one zone (ZRV) is designed to measure in the reverse direction. This makes them suitable, together with a communication scheme, for protection of power lines and cables in complex network configurations, such as parallel lines, multi-terminal lines, and so on.
Page 300
Section 7 1MRK 502 066-UUS B Impedance protection 7.8.4 Signals PID-6564-INPUTSIGNALS v2 Table 140: ZMFPDIS (21) Input signals Name Type Default Description GROUP Group signal for current input SIGNAL GROUP Group signal for voltage input SIGNAL BLOCK BOOLEAN Blocks and resets timers and outputs of entire function LOVBZ BOOLEAN Blocks and resets timers and outputs of entire function...
Page 301
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Description PU_Z1 BOOLEAN Pick up of any phase or phases from a Zone 1 fault in the forward direction PU_ND_Z1 BOOLEAN Pick up any phase or phases from zone 1 - any direction PU_Z2 BOOLEAN Pick up of any phase or phases from a Zone 2 fault in the forward...
Page 302
Section 7 1MRK 502 066-UUS B Impedance protection 7.8.5 Settings PID-6564-SETTINGS v2 Table 142: ZMFPDIS (21) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable operation of the function Enabled RLdFwd 0.01 - 5000.00 Ohm/p 0.01 60.00 Resistance determining the load...
Page 303
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description OpModePGZ2 Disabled Quadrilateral Enabled/Disabled and characteristic Quadrilateral setting for Ph-G loops, zone 2 MhoOffset X1Z2 0.01 - 3000.00 Ohm/p 0.01 40.00 Positive sequence reactance reach, zone 2 R1Z2 0.00 - 1000.00 Ohm/p...
Page 304
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description DirModeZ4 Non-directional Forward Direction of zone 4 (which will be the Fw Forward direction of zone 4) Reverse X1Z4 0.01 - 3000.00 Ohm/p 0.01 40.00 Positive sequence reactance reach, zone 4 R1Z4 0.00 - 1000.00...
Page 305
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description tPEZRV 0.000 - 60.000 0.001 0.000 Time delay to trip, Phase -Ground, zone RV IMinOpPPZRV 10 - 6000 Minimum operate ph-ph current for Phase- Phase loops, zone RV IMinOpPGZRV 5 - 6000 Minimum operate phase current for phase-...
Page 306
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description TimerLinksZ4 LoopLink (tPP & LoopLink (tPP & How start of trip delay timers should be tPG) tPG) linked for zone 4 LoopLink & ZoneLink no links TimerModeZ5 Disable all Enable Ph-G...
Page 307
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description ArgLdMinEd2 5 - 70 Minimum settable angle determining the load impedance area, for 61850 Ed.2 settings ArgLdMaxEd2 5 - 70 Maximum settable angle determining the load impedance area, for 61850 Ed.2 settings RLdFwMinEd2...
Page 308
Section 7 1MRK 502 066-UUS B Impedance protection Name Type Values (Range) Unit Description ZBANGIM REAL ZB Angle, magnitude of instantaneous value ZCIMAG REAL ZC Amplitude, magnitude of instantaneous value ZCANGIM REAL ZC Angle, magnitude of instantaneous value 7.8.7 Operation principle GUID-2432C04F-62E4-4817-9900-C830306FB4B0 v3 Settings, input and output names are sometimes mentioned in the following text without its zone suffix (i.e.
Page 309
1MRK 502 066-UUS B Section 7 Impedance protection Zone 1 A- B B - C Zone 2 A- B B -C C- A Zone 3 A- B Zone 4 A- B C -A Zone 5 A- B B -C C -A Zone 6 A- B B - C...
Page 310
Section 7 1MRK 502 066-UUS B Impedance protection characteristic. In this case, the indication will be restricted to a pulse lasting for one or two power system cycles. The phase-selection element can, owing to the current change criteria, distinguish faults with minimum influence from load and fault impedance.
Page 311
1MRK 502 066-UUS B Section 7 Impedance protection 7.8.7.4 Directional element GUID-24431EEC-5037-41CD-BC4A-7AC196F158F3 v4 Several criteria are employed when making the directional decision. The basis is provided by comparing a positive sequence based polarizing voltage with phase currents. For extra security, especially in making a very fast decision, this method is complemented with an equivalent comparison where, instead of the phase current, the change in phase current is used.
Page 312
Section 7 1MRK 502 066-UUS B Impedance protection A built-in supervision feature within high-speed distance protection itself, based on phase current change, will ensure that the FUFSPVC blocking signal is received in time. Namely, an intentional time delay will be introduced if no current magnitude change greater than 5% of IBase has been detected for any of the three phase currents.
Page 313
1MRK 502 066-UUS B Section 7 Impedance protection X (Ohm/loop) ϕ ϕ (Ohm/loop) ANSI11000415-1-en.vsd ANSI11000415 V1 EN-US Figure 151: ZMFPDIS Characteristic for phase-to-ground measuring, ohm/loop domain The faulty loop in relation to the fault type can be presented as in figure 152. The main intention with this illustration is to make clear how the fault resistive reach should be interpreted and set.
Page 314
Section 7 1MRK 502 066-UUS B Impedance protection R1 + j X1 Phase-to-ground element Phase-to-ground RFPG fault in phase A (Arc + tower resistance) (R0-R1)/3 + j (X0-X1)/3 ) Phase-to-phase R1 + j X1 element A-B Phase-to-phase RFPP fault in phase (Arc resistance) R1 + j X1 R1 + j X1...
Page 315
1MRK 502 066-UUS B Section 7 Impedance protection =2Z1 IEC15000056-1-en.vsdx IEC15000056 V1 EN-US Figure 153: Mho, offset mho characteristics and the source impedance influence on the mho characteristic The mho characteristic has a dynamic expansion due to the source impedance. Instead of crossing the origin, as for the mho to the left of figure 153, which is only valid where the source impedance (Zs) is zero, the crossing point is moved to the coordinates of the negative source impedance given an expansion of the circle shown to the right of figure 153.
Page 316
Section 7 1MRK 502 066-UUS B Impedance protection Rset Rset Xset Xset Xset (a)-(f) For phase-to-phase fault Rset Rset R Zx Forward Reverse Non-directional Xset X Zx For phase-to-earth fault Mho Characteristics Rset R Zx RNZx ...
Page 317
1MRK 502 066-UUS B Section 7 Impedance protection × (Equation 84) ANSIEQUATION15027 V1 EN-US where is the voltage vector difference between phases A and B EQUATION1790- ANSI V1 EN-US is the current vector difference between phases A and B EQUATION1791- ANSI V1 EN-US is the positive sequence impedance setting for phase-to-phase fault in zone direction For Zone 1,...
Page 318
Section 7 1MRK 502 066-UUS B Impedance protection comp ANSI15000060-1-en.vsdx ANSI15000060 V1 EN-US Figure 155: Simplified mho characteristic and vector diagram for phase A-to-B fault Offset Mho GUID-3E13E6D5-0832-4386-9677-9A40BFF42F8F v1 The characteristic for offset mho is a circle where two points on the circle are given by the two vectors where are settable through the resistance and...
Page 319
1MRK 502 066-UUS B Section 7 Impedance protection For Zone 1, R PPZ j X PPZ + ⋅ RVset (Equation 88) IECEQUATION15015 V1 EN-US For Zone 2-5 and RV, R Zx j X Zx + ⋅ RVset (Equation 89) IECEQUATION15016 V1 EN-US ...
Page 320
Section 7 1MRK 502 066-UUS B Impedance protection − ⋅ IECEQUATION15017 V1 EN-US R Zx j X Zx + ⋅ IECEQUATION15018 V1 EN-US For Zone 1, R PEZ j X PEZ + ⋅ IECEQUATION15019 V1 EN-US For Zone 2-5 and RV, R Zx j X Zx + ⋅...
Page 321
1MRK 502 066-UUS B Section 7 Impedance protection •jX comp •R ANSI15000059-1-en.vsdx ANSI15000059 V1 EN-US Figure 157: Simplified offset mho characteristic and vector diagram for phase A-to-ground fault Operation occurs if 90°≤β≤270°. Offset mho GUID-B1EF3931-7B86-4C7B-BCEA-3034482BA240 v1 The condition for operation of offset mho at phase-to-earth fault is that the angle β...
Page 322
Section 7 1MRK 502 066-UUS B Impedance protection For Zone 1, + ⋅ R PEZ j X PEZ RVset (Equation 93) IECEQUATION15025 V1 EN-US For Zone 2-5 and RV, R Zx j X Zx + ⋅ RVset (Equation 94) IECEQUATION15026 V1 EN-US •...
Page 323
1MRK 502 066-UUS B Section 7 Impedance protection The IED has a built in feature which shapes the characteristic according to the characteristic shown in figure159. The load encroachment algorithm will increase the possibility to detect high fault resistances, especially for phase-to-ground faults at remote line end. For example, for a given LdAngle , the resistive blinder for the zone measurement can be set setting of the load angle according to...
Page 326
Section 7 1MRK 502 066-UUS B Impedance protection TRIPZx 15 ms BLKTRZx TR_A_Zx BLOCK LOVBZ TR_B_Zx BLKZx TR_B_Zx PU_A_Zx 15 ms PU_B_Zx 15 ms PU_C_Zx 15 ms PPZx PGZx PU_Zx 15 ms NDZx PU_ND_Zx 15 ms ANSI12000138-1-en.vsd ANSI12000138 V1 EN-US Figure 163: Pickup and trip outputs Technical manual...
Page 327
1MRK 502 066-UUS B Section 7 Impedance protection PHG_FLT 15 ms PHSA PHSB 15 ms PHSC 15 ms PHSAB PHSBC 15 ms PHSCA PHPH_FLT 15 ms BLOCK PU_ND LOVBZ PU_PHS ANSI12000133-1-en.vsd ANSI12000133 V1 EN-US Figure 164: Additional pickup outputs 1 Technical manual...
Page 328
Section 7 1MRK 502 066-UUS B Impedance protection PHSA PHSB FWD_A 15 ms PHSC FWD_B PHSAB 15 ms FWAB PHSBC FWBC FWD_C PHSCA 15 ms FWCA FWD_G IN present FWD_1PH BLOCK LOVBZ FWD_2PH FWD_3PH ANSI12000134-1-en.vsd ANSI12000134 V1 EN-US Figure 165: Additional pickup outputs 2 PHSA PHSB REV_A...
Page 329
1MRK 502 066-UUS B Section 7 Impedance protection 7.8.7.9 Measurement Measurement supervision SEMOD54417-130 v3 The protection, control, and monitoring IEDs have functionality to measure and further process information for currents and voltages obtained from the pre-processing blocks. The number of processed alternate measuring quantities depends on the type of IED and built-in options.
Page 330
Section 7 1MRK 502 066-UUS B Impedance protection X_RANGE = 3 High-high limit X_RANGE= 1 Hysteresis High limit X_RANGE=0 X_RANGE=0 Low limit X_RANGE=2 Low-low limit X_RANGE=4 IEC05000657-2-en.vsdx IEC05000657 V2 EN-US Figure 167: Presentation of operating limits Each analog output has one corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4 (0: Normal, 1: High limit exceeded, 3: High-high limit exceeded, 2: below Low limit and 4: below Low-low limit).
Page 331
1MRK 502 066-UUS B Section 7 Impedance protection Value Reported Value Reported Value Reported Value Reported (1st) Value Reported t (*) t (*) t (*) t (*) (*)Set value for t: XDbRepInt IEC05000500-2-en.vsdx IEC05000500 V2 EN-US Figure 168: Periodic reporting Magnitude dead-band supervision SEMOD54417-163 v5 If a measuring value is changed, compared to the last reported value, and the change is larger than...
Page 332
Section 7 1MRK 502 066-UUS B Impedance protection Value Reported Value Reported Value Reported Value Reported (1st) Y Y Y Y Y Y IEC99000529-2-en.vsdx IEC99000529 V2 EN-US Figure 169: Magnitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it. The new value is reported only if the measured quantity changes more than defined by the ±ΔY set limits.
Page 333
1MRK 502 066-UUS B Section 7 Impedance protection A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported...
Page 334
Section 7 1MRK 502 066-UUS B Impedance protection 7.8.8 Technical data GUID-6C2EF52A-8166-4A23-9861-38931682AA7D v7 Table 147: ZMFPDIS, ZMFCPDIS (21) technical data Function Range or value Accuracy Number of zones 3 selectable directions, 3 fixed directions Minimum operate current, (5-6000)% of IBase ±1.0% of I phase-to-phase and phase-to- ground...
Page 335
1MRK 502 066-UUS B Section 7 Impedance protection High speed distance protection for series compensated lines ZMFCPDIS (21) GUID-ED71CF5A-1453-4F2F-9C64-3A73C59EA948 v3 7.9.1 Identification GUID-0F03DA72-0687-4762-91CB-EC8E59B86E06 v2 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number High speed distance protection zone ZMFCPDIS (zone 1-6) S00346 V1 EN-US...
Section 7 1MRK 502 066-UUS B Impedance protection The directional element utilizes a set of well-established quantities to provide fast and correct directional evaluation during various conditions, including close-in three-phase faults, simultaneous faults and faults with only zero-sequence in-feed. 7.9.3 Function block GUID-CBB51E18-15E5-4BC5-A002-6371A6DC725A v1 ZMFCPDIS (21)
Page 337
1MRK 502 066-UUS B Section 7 Impedance protection 7.9.4 Signals PID-6488-INPUTSIGNALS v2 Table 148: ZMFCPDIS (21) Input signals Name Type Default Description GROUP Group signal for current input SIGNAL GROUP Group signal for voltage input SIGNAL BLOCK BOOLEAN Blocks and resets timers and outputs of entire function LOVBZ BOOLEAN Blocks and resets timers and outputs of entire function...
Page 338
Section 7 1MRK 502 066-UUS B Impedance protection Name Type Description PU_Z1 BOOLEAN Pick up of any phase or phases from a Zone 1 fault in the forward direction PU_ND_Z1 BOOLEAN Pick up any phase or phases from zone 1 - any direction PU_Z2 BOOLEAN Pick up of any phase or phases from a Zone 2 fault in the forward...
Page 339
1MRK 502 066-UUS B Section 7 Impedance protection 7.9.5 Settings PID-6488-SETTINGS v2 Table 150: ZMFCPDIS (21) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable operation of the function Enabled OperationSC NoSeriesComp NoSeriesComp Selection of series compensation SeriesComp operation Off / On RLdFwd...
Page 340
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description IMinOpPPZ1 10 - 6000 Minimum operate ph-ph current for Phase- Phase loops, zone 1 IMinOpPGZ1 5 - 6000 minimum operate phase current for phase- ground loops. zone 1 OpModePPZ2 Disabled Quadrilateral...
Page 341
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description R1FwPPZ3 0.00 - 1000.00 Ohm/p 0.01 5.00 Positive seq. resistive reach, Ph-Ph, zone 3, zone direction RFFwPPZ3 0.01 - 9000.00 Ohm/l 0.01 30.00 Positive seq. resistive reach, Ph-Ph, zone 3, zone direction X1RvPPZ3 0.01 - 3000.00...
Page 342
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description X1FwPGZ4 0.01 - 3000.00 Ohm/p 0.01 40.00 Positive seq. reactance reach, Ph-G, zone 4, zone direction R1FwPGZ4 0.00 - 1000.00 Ohm/p 0.01 5.00 Positive seq. resistive reach, Ph-G, zone 4, zone direction X0FwPGZ4 0.01 - 9000.00...
Page 343
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description RFFwPGZ5 0.01 - 9000.00 Ohm/l 0.01 100.00 Fault resistance reach, Ph-G, zone 5, zone direction X1RvPGZ5 0.01 - 3000.00 Ohm/p 0.01 40.00 Pos. seq. react. reach, Ph-G, zone 5, opposite to zone dir RFRvPGZ5 0.01 - 9000.00...
Page 344
Section 7 1MRK 502 066-UUS B Impedance protection Table 151: ZMFCPDIS (21) Group settings (advanced) Name Values (Range) Unit Step Default Description ZoneLinkPU Phase Selection Phase Selection Select. of start source for all ZoneLinked 1st starting zone trip delay timers 3I0Enable_PG 5 - 400 %MaxIP...
Page 345
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description TimerLinksZ5 LoopLink (tPP & LoopLink (tPP & How start of trip delay timers should be tPG) tPG) linked for zone 5 LoopLink & ZoneLink no links TimerModeZRV Disable all Enable Ph-G...
Page 346
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description ArgLdMaxEd2 5 - 70 Maximum settable angle determining the load impedance area, for 61850 Ed.2 settings RLdFwMinEd2 0.01 - 5000.00 Ohm/p 0.01 0.01 Minimum settable resistance determining the load impedance area, for 61850 Ed.2 settings RLdFwMaxEd2...
Page 347
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Values (Range) Unit Description ZBANGIM REAL ZB Angle, magnitude of instantaneous value ZCIMAG REAL ZC Amplitude, magnitude of instantaneous value ZCANGIM REAL ZC Angle, magnitude of instantaneous value 7.9.7 Operation principle GUID-913A0692-F0A7-4B4B-83B4-AC2A96B3A989 v2 Settings, input and output names are sometimes mentioned in the following text without its zone suffix (i.e.
Page 348
Section 7 1MRK 502 066-UUS B Impedance protection The use of full scheme technique gives faster operation time compared to switched schemes which mostly uses a pickup of an overreaching element to select correct voltages and current depending on fault type. Each distance protection zone performs like one independent distance protection function with six measuring elements.
Page 349
1MRK 502 066-UUS B Section 7 Impedance protection Phase-to-phase-ground faults (also called double ground faults) will practically always activate phase-to-phase zone measurements. This is a substantial difference compared to the previous phase selection function in the 500- and 600-series (that is, FDPSPDIS). Measurement in two phase-to-ground loops at the same time is associated with so-called simultaneous faults: two ground faults at the same time, one each on the two circuits of a double line, or when the zero sequence current is relatively high due to a source with low Z0/Z1 ratio.In fact, in these situations...
Page 350
Section 7 1MRK 502 066-UUS B Impedance protection Since the polarizing voltage is also used for the Mho distance characteristics, the magnitude of the voltage is just as interesting as the phase. If there are symmetrical conditions and the measured per phase positive sequence voltage magnitude is above 75% of the base voltage before the fault, the pre-fault magnitude will be memorized and used as long as there is a fault.
Page 351
1MRK 502 066-UUS B Section 7 Impedance protection The calculated are compared with the non-directional phase-to-phase quadrilateral calc calc X1FwPPZx and X1RvPPZx , where x = 1 to 5 or RV), characteristics defined by the reactance reaches ( R1FwPPZx , where x = 1 to 5 or RV) for the zones, as well as the fault resistance resistance reaches ( RFPPZx , where x = 1, 2 or RV), ( RFFwPPZx and RFRvPPZx , reach setting for phase-to-phase loops ((...
Page 352
Section 7 1MRK 502 066-UUS B Impedance protection The calculated are compared with the non-directional phase-to-ground quadrilateral calc calc X1FwPEZx or X1RvPEZx , where x = 1 to 5 or RV), characteristics defined by the reactance reaches ( R1RwPEZx , where x = 1 to 5 or RV) for the zones, as well as the fault resistance resistance reaches ( RFPEZx , where x = 1, 2 or RV), ( RFFwPEZx and RFRvPEZx , reach setting for phase-to-ground loops ((...
Page 353
1MRK 502 066-UUS B Section 7 Impedance protection R1FwPPZx X (Ohm/phase) RFRvPPZx RFFwPPZx X1FwPPZx ι R (Ohm/phase) RFRvPPZx RFFwPPZx X1RvPPZx ι RFRvPPZx RFFwPPZx IEC11000418-3-en.vsd X1RvPPZx √ R1FwPPZx X1FwPPZx Settings RFRvPPZx and RFFwPPZx exist for Zones 3 to 5. For Zone 1, 2 and RV, setting RFPPZx is applicable for both forward and reverse direction. IEC11000418 V3 EN-US Figure 174: ZMFCPDIS Characteristic for the phase-to-phase measuring loops, ohm/phase domain...
Page 354
Section 7 1MRK 502 066-UUS B Impedance protection R1 + j X1 Phase-to-ground element Phase-to-ground RFPG fault in phase A (Arc + tower resistance) (R0-R1)/3 + j (X0-X1)/3 ) Phase-to-phase R1 + j X1 element A-B Phase-to-phase RFPP fault in phase (Arc resistance) R1 + j X1 R1 + j X1...
Page 355
1MRK 502 066-UUS B Section 7 Impedance protection =2Z1 IEC15000056-1-en.vsdx IEC15000056 V1 EN-US Figure 176: Mho, offset mho characteristics and the source impedance influence on the mho characteristic The mho characteristic has a dynamic expansion due to the source impedance. Instead of crossing the origin, as for the mho to the left of figure 176, which is only valid where the source impedance (Zs) is zero, the crossing point is moved to the coordinates of the negative source impedance given an expansion of the circle shown to the right of figure 176.
Page 356
Section 7 1MRK 502 066-UUS B Impedance protection OpModePP/PEZx = Mho OpModePP/PEZx = Mho OpModePP/PEZx = Mho Zone 1, Zone 2 and Zone RV and Only Zone 3-5 DirModeZ3-5 = Forward DirModeZ3-5 = Reverse DirModeZ3-5 = Non-directional OpModePP/PEZx = Offset OpModePP/PEZx = Offset OpModePP/PEZx = Offset Zone 1, Zone 2 and...
Page 357
1MRK 502 066-UUS B Section 7 Impedance protection Theory of operation SEMOD154224-46 v6 The mho algorithm is based on the phase comparison of an operating phasor and a polarizing phasor. When the operating phasor leads the reference polarizing phasor by 90 degrees or more, the function operates and gives a trip output.
Page 358
Section 7 1MRK 502 066-UUS B Impedance protection comp ANSI15000060-1-en.vsdx ANSI15000060 V1 EN-US Figure 178: Simplified mho characteristic and vector diagram for phase A-to-B fault Offset Mho GUID-2E84AD28-CA5F-4D19-B189-57354C8F7CF9 v1 The characteristic for offset mho is a circle where two points on the circle are given by the two vectors where are settable through the resistance and...
Page 359
1MRK 502 066-UUS B Section 7 Impedance protection where X1RvPPZx is the positive sequence reactance reach for phase-to-phase fault opposite to zone direction for zone x (x=1-5 and RV) R1RvPPZx is the positive sequence resistive reach for phase-to-phase fault opposite to zone direction for zone x (x=1-5 and RV) and is internally calculated according to the equation below, R FwPPZx ...
Page 360
Section 7 1MRK 502 066-UUS B Impedance protection − ⋅ IECEQUATION15017 V1 EN-US R FwPEZx j X FwPEZx + ⋅ IECEQUATION15028 V1 EN-US R FwPEZx j X FwPEZx + ⋅ (Equation 105) IECEQUATION15029 V1 EN-US where is the complex zero sequence impedance of the line in Ω/phase is the complex positive sequence impedance of the line in Ω/ phase R0FwPEZx...
Page 361
1MRK 502 066-UUS B Section 7 Impedance protection •jX comp •R ANSI15000059-1-en.vsdx ANSI15000059 V1 EN-US Figure 180: Simplified offset mho characteristic and vector diagram for phase A-to-ground fault Operation occurs if 90 °≤β≤270 °. Offset mho GUID-1CD62635-A76A-41F7-A814-8BB493F5B051 v1 The condition for operation of offset mho at phase-to-earth fault is that the angle β...
Page 362
Section 7 1MRK 502 066-UUS B Impedance protection where X1RvPEZx is the positive sequence reactance reach for phase-to-ground fault opposite to zone direction for zone x (x=1-5 and RV) R1RvPEZx is the positive sequence resistive reach for phase-to-ground fault opposite to zone direction for zone x (x=1-5 and RV) and expressed by, ...
Page 363
1MRK 502 066-UUS B Section 7 Impedance protection with the settings, that is, with a security margin between the distance zone and the minimum load impedance. This has the drawback that it will reduce the sensitivity of the protection, that is, the ability to detect resistive faults.
Page 364
Section 7 1MRK 502 066-UUS B Impedance protection PHG_FLT 15 ms PHSA PHSB 15 ms PHSC 15 ms PHSAB PHSBC 15 ms PHSCA PHPH_FLT 15 ms BLOCK PU_ND LOVBZ PU_PHS ANSI12000133-1-en.vsd ANSI12000133 V1 EN-US Figure 183: Additional pickup outputs 1 Technical manual...
Page 365
1MRK 502 066-UUS B Section 7 Impedance protection PHSA PHSB FWD_A 15 ms PHSC FWD_B PHSAB 15 ms FWAB PHSBC FWBC FWD_C PHSCA 15 ms FWCA FWD_G IN present FWD_1PH BLOCK LOVBZ FWD_2PH FWD_3PH ANSI12000134-1-en.vsd ANSI12000134 V1 EN-US Figure 184: Additional pickup outputs 2 FWD(n &...
Page 366
Section 7 1MRK 502 066-UUS B Impedance protection TRIPZx 15 ms BLKTRZx TR_A_Zx BLOCK LOVBZ TR_B_Zx BLKZx TR_B_Zx PU_A_Zx 15 ms PU_B_Zx 15 ms PU_C_Zx 15 ms PPZx PGZx PU_Zx 15 ms NDZx PU_ND_Zx 15 ms ANSI12000138-1-en.vsd ANSI12000138 V1 EN-US Figure 186: Pickup and trip outputs Technical manual...
Page 368
Section 7 1MRK 502 066-UUS B Impedance protection PGZx ZMAZx PHSA DIRAZx ZMBZx PHSB DIRBZx ZMCZx PHSC DIRCZx ZMABZx PHSAB DIRABZx ZMLBCZx PHSBC DIRBCZx ZMCAZx PHSCA DIRCAZx PPZx NDZx ANSI12000140-1-en.vsd ANSI12000140 V1 EN-US Figure 189: Intermediate logic 7.9.7.10 Measurement Measurement supervision SEMOD54417-130 v3 The protection, control, and monitoring IEDs have functionality to measure and further process information for currents and voltages obtained from the pre-processing blocks.
Page 369
1MRK 502 066-UUS B Section 7 Impedance protection Continuous monitoring of the measured quantity SEMOD54417-140 v4 Users can continuously monitor the measured quantity available in the function block by means of four defined operating thresholds, see figure 190. The monitoring has two different modes of operating: XHiLim ) or High-high limit •...
Page 370
Section 7 1MRK 502 066-UUS B Impedance protection Cyclic reporting SEMOD54417-158 v3 XRepTyp ). The The cyclic reporting of measured value is performed according to chosen setting ( measuring channel reports the value independent of magnitude or integral dead-band reporting. In addition to the normal cyclic reporting the IED also report spontaneously when measured value passes any of the defined threshold limits.
Page 371
1MRK 502 066-UUS B Section 7 Impedance protection Value Reported Value Reported Value Reported Value Reported (1st) Y Y Y Y Y Y IEC99000529-2-en.vsdx IEC99000529 V2 EN-US Figure 192: Magnitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it. The new value is reported only if the measured quantity changes more than defined by the ±ΔY set limits.
Page 372
Section 7 1MRK 502 066-UUS B Impedance protection A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported...
Page 373
1MRK 502 066-UUS B Section 7 Impedance protection 7.9.8 Technical data GUID-16656307-6B43-47B5-8817-48638FFB5999 v3 Table 155: ZMFCPDIS (21) technical data Function Range or value Accuracy Number of zones 3 selectable directions, 3 fixed directions Minimum operate current, Ph- (5 - 6000)% of IBase ±1.0% of I Ph and Ph-E Positive sequence reactance...
Page 374
Section 7 1MRK 502 066-UUS B Impedance protection two equivalent generators connected to each other via an equivalent transmission line and the phase difference between the equivalent generators is 180°. Angle = 90° Angle = -90° Centre of Pole Slip en07000003.vsd IEC07000003 V1 EN-US Figure 194: The centre of pole slip...
Page 376
Section 7 1MRK 502 066-UUS B Impedance protection Name Type Description SLIPZPER REAL Slip impedance in percent of ZBase VCOS REAL UCosPhi voltage VCOSPER REAL VCosPhi voltage in percent of VBase 7.10.5 Settings PID-3526-SETTINGS v3 Table 158: PSPPPAM (78) Group settings (basic) Name Values (Range) Unit...
Page 377
1MRK 502 066-UUS B Section 7 Impedance protection 7.10.6 Monitored data PID-3526-MONITOREDDATA v3 Table 161: PSPPPAM (78) Monitored data Name Type Values (Range) Unit Description SFREQ REAL Slip frequency SLIPZOHM REAL Slip impedance in ohms SLIPZPER REAL Slip impedance in percent of ZBase VCOS REAL UCosPhi voltage...
Page 378
Section 7 1MRK 502 066-UUS B Impedance protection Zone 1 Zone 2 X’ Pole slip impedance Apparent generator movement impedance X’ IEC06000437_2_en.vsd IEC06000437 V2 EN-US Figure 196: Movements in the impedance plain where: = transient reactance of the generator = short-circuit reactance of the step-up transformer = impedance of the power system A The detection of rotor angle is enabled when: IBase parameter set under general setting).
Page 379
1MRK 502 066-UUS B Section 7 Impedance protection en07000004.vsd IEC07000004 V1 EN-US Figure 197: Different generator quantities as function of the angle between the equivalent generators An alarm is given when movement of the rotor is detected and the rotor angle exceeds the angle set for 'WarnAngle'.
Page 380
Section 7 1MRK 502 066-UUS B Impedance protection All signals are reset if: • the direction of movement reverses • the rotor angle detector resets without a slip being counted or ResetTime . • no rotor relative movement was detected during the time Imin >...
1MRK 502 066-UUS B Section 7 Impedance protection 7.11 Out-of-step protection OOSPPAM (78) GUID-667DAF85-B87B-47AA-9EAA-CD349E66F22F v3 7.11.1 Identification GUID-BF2F1533-BA39-48F0-A55C-0B13A393F780 v2 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Out-of-step protection OOSPPAM < 7.11.2 Functionality GUID-BF2F7D4C-F579-4EBD-9AFC-7C03296BD5D4 v7 The out-of-step protection OOSPPAM (78) function in the IED can be used for both generator protection and as well for line protection applications.
Section 7 1MRK 502 066-UUS B Impedance protection 7.11.4 Signals PID-3539-INPUTSIGNALS v9 Table 163: OOSPPAM (78) Input signals Name Type Default Description I3P1 GROUP Group connection for three-phase current input 1 SIGNAL I3P2 GROUP Group connection for three-phase current input 2 SIGNAL GROUP Group connection for three-phase voltage input...
Page 384
Section 7 1MRK 502 066-UUS B Impedance protection 7.11.6 Monitored data PID-3539-MONITOREDDATA v7 Table 169: OOSPPAM (78) Monitored data Name Type Values (Range) Unit Description CURRENT REAL Magnitude of the measured positive- sequence current, in A VOLTAGE REAL Magnitude of the measured positive- sequence voltage, in V REAL Real part of measured positive-sequence...
Page 385
1MRK 502 066-UUS B Section 7 Impedance protection ¬ trajectory of Z(R, X) to the 3rd The 2nd pole-slip X in Ohms The 1st pole slip pole slip occurred Pre-disturbance occurred normal load - - - - - - - - Z(R, X) - - - - - - - -...
Page 386
Section 7 1MRK 502 066-UUS B Impedance protection |Z| in Ohms rotor (power) angle in rad normal angle load Z(R, X) unde r fa ult lies on the impe dance line or nea r (for 3-ph faults ) fault 500 ms fa ult occ urrs Unde r 3-pha s e fa ult...
Page 387
1MRK 502 066-UUS B Section 7 Impedance protection X [Ohm] Z(R,X) 20 ms fault relay after line out - - - - - - - - - - pre-fault - - - - - - - - - zone 2 - - - Z(R,X) - - -...
Page 388
Section 7 1MRK 502 066-UUS B Impedance protection Position of the OOS relay is the origin of - - - - - - - - - the R - X plane - - - - - - Zone 2 X-line determined Zline ®...
Page 389
1MRK 502 066-UUS B Section 7 Impedance protection The out-of-step relay, as in Figure looks into the system and the impedances in that direction are forward impedances: ForwardX = Xtr + Xline + Xeq (All values referred to generator voltage) •...
Page 390
Section 7 1MRK 502 066-UUS B Impedance protection width of the lens characteristic). A parameter in this calculation routine is the value of the traverseTimeMin . The minimum traverse time is the minimum time that minimum traverse time, the travel of the complex impedance Z(R, X) through the lens, from one side to the other, must last in order to recognize that a pole-slip has occurred.
Page 391
1MRK 502 066-UUS B Section 7 Impedance protection The first method The circuit breaker is only allowed to break the current when the rotor angle has become less than TripAngle , on its way to 0 electrical degrees. A recommended value for the setting the set value TripAngle is 90 degrees or less, for example 60 degrees.
Page 392
Section 7 1MRK 502 066-UUS B Impedance protection very high currents due pos. seq. current in kA to out-of-step condition trip command to CB rotor angle in radian ← after 1st pole slip fault cleared → ← 2nd current increases under fault conditions current decreases fault...
Page 393
1MRK 502 066-UUS B Section 7 Impedance protection Calculation of Calculation of UPSRE UPSRE R and X parts R and X parts UPSIM UPSIM of the complex of the complex Z(R,X) Z(R,X) UPSMAG UPSMAG positive- positive- IPSRE IPSRE sequence sequence Z(R,X) Z(R,X) IPSIM...
Page 394
Section 7 1MRK 502 066-UUS B Impedance protection 7.12.1 Identification SEMOD158930-2 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Loss of excitation LEXPDIS < SYMBOL-MM V1 EN-US 7.12.2 Functionality SEMOD151269-4 v8 There are limits for the under-excited operation of a synchronous machine. A reduction of the excitation current weakens the coupling between the rotor and the stator.
1MRK 502 066-UUS B Section 7 Impedance protection PID-3665-OUTPUTSIGNALS v5 Table 172: LEXPDIS (40) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRZ1 BOOLEAN Trip signal from impedance zone Z1 TRZ2 BOOLEAN Trip signal from impedance zone Z2 PICKUP BOOLEAN Common start signal...
Page 396
Section 7 1MRK 502 066-UUS B Impedance protection Table 175: LEXPDIS (40) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups MeasureMode PosSeq PosSeq Measuring mode (PosSeq, AB, BC, CA) Table 176: LEXPDIS (40) Non group settings (advanced) Name Values (Range)
Page 397
1MRK 502 066-UUS B Section 7 Impedance protection Measured mode Measured apparent impedance posseq posseq posseq (Equation 111) EQUATION2051-ANSI V1 EN-US (Equation 112) EQUATION2052-ANSI V1 EN-US (Equation 113) EQUATION2053-ANSI V1 EN-US (Equation 114) EQUATION2054-ANSI V1 EN-US There are three characteristics in LEXPDIS (40) protection as shown in figure 209. Naimly: •...
Page 398
Section 7 1MRK 502 066-UUS B Impedance protection Underexitation protection Underexcitation Protection Restrain area Restrain area Directional blinder Z1, Fast zone Z2, Slow zone IEC06000455-2-en.vsd IEC06000455 V2 EN-US Figure 209: Three characteristics in LEXPDIS (40) protection When the apparent impedance reaches the zone Z1 this zone will operate, normally with a short delay.
Page 399
1MRK 502 066-UUS B Section 7 Impedance protection Offset XoffsetZ1 Z (apparent impedance) Z1 = Z - (XoffsetZ1 + Z1diameter Z1diameter/2) Z1 or Z2 en06000456-2.vsd IEC06000456 V2 EN-US Figure 210: Zone measurement in LEXPDIS (40) protection function The impedance Z1 is constructed from the measured apparent impedance Z and the impedance corresponding to the centre point of the impedance characteristic (Z1 or Z2).
Page 400
Section 7 1MRK 502 066-UUS B Impedance protection Underexcitation Protection Restrain area XoffsetDirLine DirAngle Z (apparent impedance) en06000457.vsd IEC06000457 V1 EN-US Figure 211: Impedance constructed as XoffsetDirLine in LEXPDIS (40) protection LEXPDIS (40) function is schematically described in figure 212. Positive pickupZ1 Z in...
1MRK 502 066-UUS B Section 7 Impedance protection 7.12.8 Technical data SEMOD175144-2 v9 Table 178: LEXPDIS (40) technical data Function Range or value Accuracy X offset of Mho top point for (–1000.00–1000.00)% of Z ±5.0% of V Base Zone 1 and Zone 2 Diameter of Mho circle for (0.0–3000.00)% of Z ±5.0% of V...
Section 7 1MRK 502 066-UUS B Impedance protection The protection function can detect ground faults in the entire rotor winding and associated connections. Requires injection unit REX060 and a coupling capacitor unit REX061 for correct operation. 7.13.3 Function block GUID-9ECCA83B-BE74-4C01-9C51-0E3295D9CC75 v1 ROTIPHIZ (64R) USV* TRIP...
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Description ERROR BOOLEAN Error ERRSTAT INTEGER Error indication RAVE REAL Measured resistance to earth in Ohm at inj freq XAVE REAL Measured reactance to earth in Ohm at inj freq FREQV REAL Measured frequency of injected voltage into rotor...
Page 404
Section 7 1MRK 502 066-UUS B Impedance protection Table 183: ROTIPHIZ (64R) Non group settings (basic) Name Values (Range) Unit Step Default Description k1Real -10000000000.00 0.001 10000.000 Multiplication factor k1 for calibration, real part 10000000000.00 k1Imag -10000000000.00 0.001 0.000 Multiplication factor k1 for calibration, imaginary part 10000000000.00 k2Real...
Page 405
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Values (Range) Unit Description ZREFRE REAL Used reference impedance real part in ZREFIM REAL Used reference impedance imaginary part in Ohm VRMSSTAT BOOLEAN RMS voltage status, TRUE when > VLimRMS 7.13.7 Detailed interface description GUID-C7741274-436C-4124-B400-52AEB6E3569B v1...
Page 406
Section 7 1MRK 502 066-UUS B Impedance protection ZREFRE is the real part (resistance) of the active reference impedance. • ZREFIM is the imaginary part (reactance) of the active reference impedance. • • VRMSSTAT, this output is not used in rotor protection application. ERRSTAT output signal Convert the integer output signal to binary and see table below for interpretation of individual bits:...
Page 407
1MRK 502 066-UUS B Section 7 Impedance protection GUID-21C6C7C9-6D62-43C2-BD49-D7E71415D95F v2 The protection principle is based on injection of voltage to the exciter point of the field circuit. Step -up Transformer U> V inj Rshunt REX061 REX060/ RIM module REG670 Generator Protection Panel ANSI11000014_1_en.vsd ANSI11000014 V1 EN-US Figure 214: Example installation for rotor injection...
Page 408
Section 7 1MRK 502 066-UUS B Impedance protection 7.13.8.1 The injection unit REX060 GUID-AA9E1EC4-F10C-492F-AD9A-90FE040A97EA v2 IED and Injection Top view Back view Front view Power connectors connector Keylock Backplane Injection switch Injection LED Front-plate HMI with logic IEC11000015-1-en.vsd IEC11000015 V1 EN-US Figure 215: Injection unit REX060 The REX060 unit is a common unit that can be configured for either rotor or stator ground fault protection, or for both.
Page 409
1MRK 502 066-UUS B Section 7 Impedance protection REX 061 Rotor Reference Impedance ANSI11000065_1_en.vsd ANSI11000065 V1 EN-US Figure 216: Equivalent diagram for Sensitive rotor earth fault protection principle The impedance Z is equal to the capacitive reactance between the rotor winding and Measured ground (1/ωC ) and the ground fault resistance (R...
Page 410
Section 7 1MRK 502 066-UUS B Impedance protection The injection unit REX060 is connected to the generator and to IED as shown in figure 214. 7.13.8.3 General measurement of ground fault impedance GUID-545BFD9B-BB9F-434C-AD03-B83F5DFC4811 v2 From the REX060 the injected voltage and current are delivered as AC voltages to IED. The injected voltage and current is measured and analyzed in the protection function software within IED.
Page 411
1MRK 502 066-UUS B Section 7 Impedance protection The healthy impedance measured at non-faulted conditions during the calibration is referred to as the reference impedance in further text. In IED the measured impedance is compared to the reference impedance in order to evaluate the fault impedance.
Page 412
Section 7 1MRK 502 066-UUS B Impedance protection 7.13.8.4 Simplified logic diagram GUID-F92413ED-371C-4962-AF72-7BF8D5A188C2 v1 ROTIPHIZ (64R) Rshunt v_i_ref bare ¸ Measured v_v_ref Compare & Evaluate ZRef1 REX060 ZRef2 REG670 ANSI10000327_1_en.vsd ANSI10000327 V1 EN-US Figure 218: Simplified logic diagram for sensitive rotor earth fault protection, injection based ROTIPHIZ (64R) The sensitive rotor earth fault protection function receives amplified injected voltage and current via the REX060 unit as two voltages signals.
Page 413
1MRK 502 066-UUS B Section 7 Impedance protection Alarm Adaptive TripDelay Trip IEC10000326-3.vsd IEC10000326 V2 EN-US Figure 219: ROTIPHIZ (64R) Alarm and trip logic If the fault resistance R is smaller than R and longer than alarm delay (using delay-on), output Alarm ALARM is set.
Page 414
Section 7 1MRK 502 066-UUS B Impedance protection Trip time × 10 FilterLength × 2 FilterLength Fault resistance Trip Alarm IEC11000002-1-en.vsd IEC11000002 V1 EN-US Figure 220: Trip time characteristic as function of fault resistance A third high level step for the detection of excitation system ground faults on the AC side of the excitation rectifier is available.
1MRK 502 066-UUS B Section 7 Impedance protection Function Range or value Accuracy Operate time, alarm 1.00 s typically at R = 0 Ω and filter length = 1 s Trip time, trip 3.00 s typically at R = 0 Ω and filter length = 1 s Alarm time delay (0.00 - 600.00) s...
Page 416
Section 7 1MRK 502 066-UUS B Impedance protection The 100% stator earth fault protection requires the injection unit REX060 and optional shunt resistor unit REX062 for correct operation. 7.14.3 Detailed interface description GUID-4F724FE7-1DCC-449C-8887-6DBF64268279 v1 Inputs of 100% stator earth fault protection, injection based STTIPHIZ •...
Page 417
1MRK 502 066-UUS B Section 7 Impedance protection Table 188: Definition of errors ERRSTAT output integer Priority 3 Priority 2 Priority 3 Priority 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Interfer- Under- Under-...
1MRK 502 066-UUS B Section 7 Impedance protection Name Type Description ZREFRE REAL Used reference impedance real part in Ohm ZREFIM REAL Used reference impedance imaginary part in Ohm VRMSSTAT BOOLEAN RMS voltage status, TRUE when > VLimRMS 7.14.6 Settings PID-6804-SETTINGS v2 Table 191: STTIPHIZ (64S) Group settings (basic) Name...
Page 420
Section 7 1MRK 502 066-UUS B Impedance protection Name Values (Range) Unit Step Default Description RefR2 0.001 - 0.001 1000.000 Reference resistance R2 in ohm 1000000000.000 RefX2 -1000000.000 - 0.001 2000.000 Reference reactance X2 in ohm 1000000.000 RefR3 0.001 - 0.001 1000.000 Reference resistance R3 in ohm...
Page 421
1MRK 502 066-UUS B Section 7 Impedance protection 7.14.8 Operation principle GUID-44EDCD0D-7F1A-4C1C-ABC0-4981B9C29CE5 v1 The protection function is based on signal injection into a stator winding. These square wave signals are generated in a separate injection unit REX060. The injection signals are connected to the stator winding via: •...
Page 422
Section 7 1MRK 502 066-UUS B Impedance protection Step-up Transformer U> Vinj Rshunt Generator REX060/SIM module 95 % SEF REG670 ANSI11000067-1-en.vsd Generator Protection Panel ANSI11000067 V1 EN-US Figure 222: Example installation for stator injection Generator unit consisting of a synchronous generator and a step-up transformer Grounding resistor for the stator winding Neutral point VT which is used as injection point and also to provide galvanic separation between primary circuit and injection equipment...
Page 423
1MRK 502 066-UUS B Section 7 Impedance protection The injection unit REX060 GUID-FFDE764F-3995-4FE4-B330-9A7635F95166 v2 IED and Injection Top view Back view Front view Power connectors connector Keylock Backplane Injection switch Injection LED Front-plate HMI with logic IEC11000015-1-en.vsd IEC11000015 V1 EN-US Figure 223: Injection unit REX060 The REX060 unit is a common unit with it's own built-in Power Supply Module (PSM) of the same type as used in the IED that can be equipped for either rotor or stator ground fault protection, or...
Page 424
Section 7 1MRK 502 066-UUS B Impedance protection • Limitation of earth fault current at stator ground fault • Damping of transient overvoltages in the generator system • Required insulation level to withstand overvoltage in “healthy” phases at single phase ground fault •...
Page 425
1MRK 502 066-UUS B Section 7 Impedance protection Ph Ph EF_Max × EQUATION2515 V1 EN-US where: is the ohmic value of the primary resistor is the protected generator rated phase-to-phase voltage G_Ph-Ph Typically a VT is connected in parallel with this resistor in order to measure voltage in the stator neutral point.
Page 426
Section 7 1MRK 502 066-UUS B Impedance protection is the ohmic value of the resistor connected to the secondary winding The distribution transformer typically has rating of several kVA (e.g. 33kVA) and rated secondary winding voltage of up to 240V. Note that maximum voltage on the secondary side of the distribution transformer for an ground fault at generator terminals can be calculated as follows: G Ph Ph ×...
Page 427
1MRK 502 066-UUS B Section 7 Impedance protection The three-phase power transformer typically has rating of several tens of kVA (e.g. 129kVA) and rated secondary winding voltage of up to 550V. Note that maximum voltage across secondary resistor RN for an ground fault at generator terminals can be calculated as follows: ×...
Page 428
Section 7 1MRK 502 066-UUS B Impedance protection Bare Measured series stat Û fault stat Stator Reference Impedance Z ANSI11000008_1_en.vsd ANSI11000008 V1 EN-US Figure 225: High-resistance generator grounding with a neutral point resistor There are some alternatives for connection of the neutral point resistor as shown in figure (low voltage neutral point resistor connected via a DT).
Page 429
1MRK 502 066-UUS B Section 7 Impedance protection stat ANSI11000009_1_en.vsd ANSI11000009 V1 EN-US Figure 226: Effective high-resistance generator grounding via a distribution transformer Another alternative is shown in figure (High-resistance grounding via a grounded wye-broken delta transformer). In this case the transformer must withstand the large secondary current caused by primary ground fault.
Page 430
Section 7 1MRK 502 066-UUS B Impedance protection stat ANSI11000010_1_en.vsd ANSI11000010 V1 EN-US Figure 227: High-resistance generator grounding via a grounded wye-broken delta transformer It is also possible to make the injection via VT open delta connection, as shown in figure 228. Technical manual...
Page 431
1MRK 502 066-UUS B Section 7 Impedance protection stat æ ö × ç ÷ × è ø ANSI11000011_2_en.vsd ANSI11000011 V2 EN-US Figure 228: Injection via open delta VT connection It must be observed that the resistor is normally applied for ferro-resonance damping. The resistance is will have very little contribution to the ground fault current as it has high resistance.
Page 432
Section 7 1MRK 502 066-UUS B Impedance protection particular installation alarm sensitivity of up to 50 kΩ may be reached at steady state operating condition of the machine. Note that it is possible to connect two REG670 in parallel to the REX060 injection unit in order to obtain redundant measurement in two separate IEDs.
Page 433
1MRK 502 066-UUS B Section 7 Impedance protection The healthy impedance measured at non-faulted conditions is referred to as the reference impedance in further text. In IED the measured impedance is compared to the reference impedance. In case of an ground RAlarm and RTrip .
Page 434
Section 7 1MRK 502 066-UUS B Impedance protection The injected frequency of the square wave, is a set value, deviating from the fundamental frequency (50 or 60 Hz). The injected frequency can be set within the range 50 – 250 Hz with recommend value 87 Hz in 50 Hz systems and 103 Hz in 60 Hz systems.
Page 435
1MRK 502 066-UUS B Section 7 Impedance protection to use RMS to determine a change of machine condition because the RMS makes a distinction between the measured values and the total amplitude of the signal. The standstill condition only contains the injected frequency, while the full load condition and full speed condition contains other frequencies, which amplitudes may change under varying machine conditions.
Page 436
Section 7 1MRK 502 066-UUS B Impedance protection Trip time × 10 FilterLength × 2 FilterLength Fault resistance Trip Alarm IEC11000002-1-en.vsd IEC11000002 V1 EN-US Figure 231: Trip time characteristic as function of fault resistance During run-up and shut down of the generator, i.e. when the rotational speed of the generator changes, there will occur harmonic voltages with varying frequency at the injection equipment connection point (for example see voltage generator V in Figure 225).
Page 437
1MRK 502 066-UUS B Section 7 Impedance protection From the measured impedance the stator ground fault resistance can be estimated since the reference impedance is known. An alarm level (Ω) is set at a higher value and the ALARM signal is activated after a set alarm delay time.
Page 438
Section 7 1MRK 502 066-UUS B Impedance protection Alarm Adaptive TripDelay Trip IEC10000326-3.vsd IEC10000326 V2 EN-US Figure 233: STTIPHIZ alarm and trip logic If the fault resistance R is smaller than R and last longer than set alarm delay, output ALARM Alarm is set.
Section 7 1MRK 502 066-UUS B Impedance protection 7.15.4 Signals PID-3587-INPUTSIGNALS v8 Table 197: ZGVPDIS (21) Input signals Name Type Default Description GROUP Connection for current sample signals SIGNAL GROUP Connection for voltage sample signals SIGNAL BLOCK BOOLEAN Block of the function BLKZ BOOLEAN Block due to fuse failure...
Page 441
1MRK 502 066-UUS B Section 7 Impedance protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.000 Time delay to operate for Zone 1 OpModeZ2 Disabled EnhancedReach Operation mode of Zone 2: Off/Ph-Ph/ PP Loops EnhancedReach EnhancedReach Z2Fwd 3.0 - 200.0 % Zb...
Page 442
Section 7 1MRK 502 066-UUS B Impedance protection 7.15.6 Monitored data PID-3587-MONITOREDDATA v7 Table 202: ZGVPDIS (21) Monitored data Name Type Values (Range) Unit Description REAL Voltage in phase A REAL Voltage in phase B REAL Voltage in phase C REAL Current in phase A REAL...
Page 443
1MRK 502 066-UUS B Section 7 Impedance protection Offset Mho, Zone3 Offset Mho, Zone2 Offset Mho, Zone1 ImpedanceAng IEC11000294-2-en.vsd IEC11000294 V2 EN-US Figure 235: Offset mho characteristics of three zones The complete functionality is shown in figure 236. Technical manual...
Page 444
Section 7 1MRK 502 066-UUS B Impedance protection PU_Z1 ZONE 1 TRZ1 OpModetZ1 BLKZ Z1Fw BLOCK Z1Rev PICKUP PU_Z2 ZONE 2 OpModetZ2 TRZ2 Z2Fw Z2Rev LoadEnchModZ2 TRIP PU_Z3 ZONE 3 OpModetZ3 Z3Fw Z3Rev TRZ3 LoadEnchModZ3 LoadEnch LdAngle UVSealIn 27 Trip OpMode27pickup 27 PU 27_COMP...
Page 445
1MRK 502 066-UUS B Section 7 Impedance protection BLOCK BLKZ Comparator < EnableZone1 pickupZone1 Z1Fw Z1Rev Timer Logic Comparator tripZone1 < tOpDelayZ1 EnableZone1 opModetZ1 Z1Fw Z1Rev Comparator < EnableZone1 Z1Fw Z1Rev ANSI11000297_1.en.vsd ANSI11000297 V1 EN-US Figure 237: Block diagram of zone 1 The functionality included in zone 1: •...
Page 446
Section 7 1MRK 502 066-UUS B Impedance protection A I · · · Vcomp ß · Vcomp A I · · ANSI11000296_1_en.vsd ANSI11000296 V1 EN-US Figure 238: Simplified offset mho characteristics for A-B fault in zone 1 Criteria: Operation occurs if 90° ≤ β ≤ 270°. In the above characteristics, Z1Fwd and Z1Rev are the forward and reverse reach percentage ImpedanceAng is the characteristic angle provided for the zone 1 operation region.
Page 448
Section 7 1MRK 502 066-UUS B Impedance protection pickupPh1 i1Mag a==b pickupPh2 pickup i2Mag a==b pickupPh3 i3Mag a==b ANSI11000307_1_en.vsd ANSI11000307 V1 EN-US Figure 240: Logic diagram for the selection of the maximum current loop The phase-to-ground voltage is compensated with zero sequence voltage in order to avoid the function operating for ground faults in zone 1, that is, complete generator stator winding and LV winding of the power transformer.
Page 449
1MRK 502 066-UUS B Section 7 Impedance protection × IAB jX × IAB Z FW × Vcomp VAB IAB Z FW ß × Vcomp VAB IAB Z REV × IAB jX × IAB Z REV ANSI11000300_1_en.vsd ANSI11000300 V1 EN-US Figure 242: Simplified offset mho characteristics for A-to-B fault in zone 2 Operation occurs if 90°...
Page 450
Section 7 1MRK 502 066-UUS B Impedance protection Sl.No Measuring Loop Voltage Phasor Current Phasor VAG V VBG V VCG V 1) Only the loop with maximum current is allowed to operate Trip time tZ2 . The operate time delay for zone 2 can be provided using the setting Zone 2 is provided load encroachment detection feature based on positive sequence components measurements..
Page 451
1MRK 502 066-UUS B Section 7 Impedance protection ANSI11000304-1-en.vsd ANSI11000304 V1 EN-US Figure 243: Load encroachment characteristics 7.15.7.5 Under voltage seal-in GUID-03357A87-A879-477C-ADBE-CC28AB54D34E v4 The under voltage seal-in logic ensures the trip under fault condition, where as under impedance function will reset due to CT saturation. The pickup signal of zone 2 and zone 3 elements trigger OpMode27pickup .
Page 452
Section 7 1MRK 502 066-UUS B Impedance protection 27 PU BLOCK BLKUV timeDelay27 27 Trip Zone 2 picukp tPulse = 1sec Drop-Off EnableUV = timer 0 = UV OFF 1 = Z2 pickup 10 ms 2 = Z3 pickup Zone 3 pickup uP1P2 a<b 27_COMP...
1MRK 502 066-UUS B Section 8 Current protection Section 8 Current protection Instantaneous phase overcurrent protection PHPIOC (50) IP14506-1 v6 8.1.1 Identification M14880-1 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous phase overcurrent PHPIOC protection 3-phase output 3I>>...
Page 454
Section 8 1MRK 502 066-UUS B Current protection PID-6519-OUTPUTSIGNALS v5 Table 205: PHPIOC (50) Output signals Name Type Description TRIP BOOLEAN Trip signal from any phase TR_A BOOLEAN Trip signal from phase A TR_B BOOLEAN Trip signal from phase B TR_C BOOLEAN Trip signal from phase C...
Page 455
1MRK 502 066-UUS B Section 8 Current protection 8.1.6 Monitored data PID-6519-MONITOREDDATA v5 Table 210: PHPIOC (50) Monitored data Name Type Values (Range) Unit Description REAL Current in phase A REAL Current in phase B REAL Current in phase C 8.1.7 Operation principle M12913-3 v7...
Section 8 1MRK 502 066-UUS B Current protection Function Range or value Accuracy Reset time at 10 to 0 x I Min. = 25ms Max. = 40 ms Critical impulse time 2 ms typically at 0 to 10 x I Dynamic overreach <...
Page 458
Section 8 1MRK 502 066-UUS B Current protection Name Type Default Description BLK2 BOOLEAN Block of Step2 BLK3 BOOLEAN Block of Step3 BLK4 BOOLEAN Block of Step4 MULTPU1 BOOLEAN When activated, the pickup multiplier is in use for step1 MULTPU2 BOOLEAN When activated, the pickup multiplier is in use for step2 MULTPU3...
1MRK 502 066-UUS B Section 8 Current protection Name Type Description PU_ST1_A BOOLEAN Pickup signal from step1 phase A PU_ST1_B BOOLEAN Pickup signal from step1 phase B PU_ST1_C BOOLEAN Pickup signal from step1 phase C PU_ST2_A BOOLEAN Pickup signal from step2 phase A PU_ST2_B BOOLEAN Pickup signal from step2 phase B...
Page 460
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Characterist1 ANSI Ext. inv. ANSI Def. Time Selection of time delay curve type for step ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
Page 461
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.400 Def time delay or add time delay for inverse char of step 2 0.05 - 999.00 0.01 0.05 Time multiplier for the inverse time delay for step 2 IMin2 1 - 10000...
Page 462
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Characterist4 ANSI Ext. inv. ANSI Def. Time Selection of time delay curve type for step ANSI Very inv. ANSI Norm. inv. ANSI Def. Time L.T.E. inv. L.T.V.
Page 463
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description tTRCrv1 0.005 - 100.000 0.001 13.500 Parameter TR for customer programmable curve for step 1 tCRCrv1 0.1 - 10.0 Parameter CR for customer programmable curve for step 1 HarmBlock1 Disabled Disabled...
Page 464
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description tReset4 0.000 - 60.000 0.001 0.020 Constant reset time for step 4 tPCrv4 0.005 - 3.000 0.001 1.000 Parameter P for customer programmable curve for step 4 tACrv4 0.005 - 200.000 0.001...
Page 465
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description PU3_MaxEd2Set 5 - 2500 2500 Maximum settable operating phase current level for step 3 in % of IBase, for 61850 Ed.2 settings PU4_MinEd2Set 5 - 2500 Minimum settable operating phase current level for step 4 in % of IBase, for 61850 Ed.2 settings...
Page 466
Section 8 1MRK 502 066-UUS B Current protection 4 step over current element faultState dirPhAFlt Direction faultState One element for each Element dirPhBFlt step PICKUP dirPhCFlt TRIP Harmonic harmRestrBlock Restraint Element enableDir Mode Selection enableStep1-4 DirectionalMode1-4 ANSI05000740-2-en.vsd ANSI05000740 V2 EN-US Figure 247: Functional overview of OC4PTOC (51/67) M12883-16 v10 NumPhSel , is used to specify the number of phase currents to be...
Page 467
1MRK 502 066-UUS B Section 8 Current protection steps. It shall be noted that the selection of measured value (DFT or RMS) do not influence the operation of directional part of OC4PTOC (51/67) . Service value for individually measured phase currents are also available on the local HMI for OC4PTOC (51/67) function, which simplifies testing, commissioning and in service operational checking of the function.
Page 468
Section 8 1MRK 502 066-UUS B Current protection • If the current is still above the set value of the minimum operating current (between 10 and IBase ), the condition seals in. 30% of the set terminal rated current • If the fault has caused tripping, the trip endures.
Page 469
1MRK 502 066-UUS B Section 8 Current protection Reverse Forward en05000745.vsd IEC05000745 V1 EN-US Technical manual...
Page 470
Section 8 1MRK 502 066-UUS B Current protection Reverse Forward en05000745_ansi.vsd ANSI05000745 V1 EN-US Figure 248: Directional characteristic of the phase overcurrent protection AngleRCA is –65°. The parameters AngleROA gives the angle sector from The default value of AngleRCA for directional borders. PUMinOpPhSel is the A minimum current for directional phase pickup current signal can be set.
Page 472
Section 8 1MRK 502 066-UUS B Current protection Different types of reset time can be selected as described in section "Inverse characteristics". There is a possibility to activate a preset change ( MultiPUx, x= 1, 2, 3 or 4) of the set operation current via a binary input (enable multiplier).
Page 473
1MRK 502 066-UUS B Section 8 Current protection 8.2.8 Technical data M12342-1 v21 Table 219: OC4PTOC (51/67) technical data Function Range or value Accuracy lBase Trip current, step 1-4 (5-2500)% of ±1.0% of I at I ≤ I ±1.0% of I at I > I Reset ratio >...
Section 8 1MRK 502 066-UUS B Current protection 8.3.1 Identification M14887-1 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous residual overcurrent EFPIOC protection IN>> IEF V1 EN-US 8.3.2 Functionality M12701-3 v14 The Instantaneous residual overcurrent protection EFPIOC (50N) has a low transient overreach and short tripping times to allow the use for instantaneous ground-fault protection, with the reach limited to less than the typical eighty percent of the line at minimum source impedance.
Page 475
1MRK 502 066-UUS B Section 8 Current protection 8.3.5 Settings IP11449-1 v2 PID-3574-SETTINGS v3 Table 222: EFPIOC (50N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled Pickup 5 - 2500 Operate residual current level in % of IBase Table 223: EFPIOC (50N) Group settings (advanced) Name Values (Range)
Section 8 1MRK 502 066-UUS B Current protection 8.3.8 Technical data IP11450-1 v1 M12340-2 v8 Table 226: EFPIOC (50N) technical data Function Range or value Accuracy Trip current (5-2500)% of lBase ±1.0% of I at I ≤ I ±1.0% of I at I >...
1MRK 502 066-UUS B Section 8 Current protection IDir, VPol and IPol can be independently selected to be either zero sequence or negative sequence. Second harmonic blocking can be set individually for each step. EF4PTOC (51N/67N) can be used as main protection for phase-to-ground faults. EF4PTOC (51N/67N) can also be used to provide a system back-up for example, in the case of the primary protection being out of service due to communication or voltage transformer circuit failure.
Section 8 1MRK 502 066-UUS B Current protection Name Type Default Description I3PDIR GROUP Group connection for directional current SIGNAL BLOCK BOOLEAN General block BLKTR BOOLEAN Block of trip BLK1 BOOLEAN Block of step 1 (Pickup and trip) BLK2 BOOLEAN Block of step 2 (Pickup and trip) BLK3 BOOLEAN...
Page 479
1MRK 502 066-UUS B Section 8 Current protection PID-6529-SETTINGS v5 Table 229: EF4PTOC (51N_67N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled EnDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay Characteristic Angle (RCA) polMethod Voltage...
Page 480
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 1 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
Page 481
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description Pickup2 1 - 2500 Residual current operate level for step 2 in % of IBase 0.000 - 60.000 0.001 0.400 Def time delay or add time delay for inverse char of step 2 0.05 - 999.00 0.01...
Page 482
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description DirModeSel4 Disabled Non-directional Directional mode of step 4 (Off, Non-dir, Non-directional Forward, Reverse) Forward Reverse Characterist4 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 4 ANSI Very inv.
Page 483
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description tPRCrv1 0.005 - 3.000 0.001 0.500 Param PR for customized inverse reset time curve for step 1 tTRCrv1 0.005 - 100.000 0.001 13.500 Param TR for customized inverse reset time curve for step 1 tCRCrv1 0.1 - 10.0...
Page 484
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description tACrv4 0.005 - 200.000 0.001 13.500 Param A for customized inverse trip time curve for step 4 tBCrv4 0.00 - 20.00 0.01 0.00 Param B for customized inverse trip time curve for step 4 tCCrv4 0.1 - 10.0...
Page 485
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description PU3_MaxEd2Set 1 - 2500 2500 Maximum settable operate residual current level for step 3 in % of IBase, for 61850 Ed.2 settings PU4_MinEd2Set 1 - 2500 Minimum settable operate residual current level for step 4 in % of IBase, for 61850 Ed.2 settings...
Page 486
Section 8 1MRK 502 066-UUS B Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system WYE point and ground (that is, current transformer located in the neutral grounding of a WYE connected transformer winding).
Page 487
1MRK 502 066-UUS B Section 8 Current protection connected to a dedicated VT input of the IED in PCM600). In such case the pre-processing block will calculate -3V from the first three inputs into the pre-processing block by using the following formula: VPol=3V0=(VA +VB +VC) (Equation 127)
Page 488
Section 8 1MRK 502 066-UUS B Current protection The residual current is pre-processed by a discrete fourier filter. Thus the phasor of the fundamental frequency component of the polarizing current is derived. This phasor is then multiplied with pre-set equivalent zero-sequence source Impedance in order to calculate equivalent polarizing voltage VIPol in accordance with the following formula: ×...
Page 489
1MRK 502 066-UUS B Section 8 Current protection 8.4.7.6 Internal ground-fault protection structure M13941-157 v3 The protection is internally divided into the following parts: Four residual overcurrent steps. Directional supervision element for residual overcurrent steps with integrated directional comparison step for communication based ground-fault protection schemes (permissive or blocking).
Page 490
Section 8 1MRK 502 066-UUS B Current protection BLKTR EMULTX IMinx Characteristx=DefTime a>b TRSTx a>b PUSTx MultPUx tMin Pickupx Inverse BLKx BLOCK Characteristx=Inverse 2ndHarm_BLOCK_Int HarmRestrainx=Disabled STEPx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int ANSI10000008-4-en.vsd ANSI10000008 V3 EN-US Figure 254: Simplified logic diagram for residual overcurrent step x, where x = step 1, 2, 3 or 4 The protection can be completely blocked from the binary input BLOCK.
Page 491
1MRK 502 066-UUS B Section 8 Current protection Operating area PUREV 0.6 * INDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg INDirPU VPol = -3V 65° -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
Page 492
Section 8 1MRK 502 066-UUS B Current protection IopDir PUREV a>b REVERSE_Int PUFW a>b IDirPU FORWARD_Int FORWARD_Int AngleRCA polMethod=Voltage VPolMin polMethod=Dual IPolMin VPol I3PDIR polMethod=Current VTPol IPol REVERSE_Int VIPol STAGE1_DIR_Int RNPol Complex STAGE2_DIR_Int Number XNPol STAGE3_DIR_Int STAGE4_DIR_Int BLOCK ANSI07000067-4-en.vsd ANSI07000067 V4 EN-US Figure 256: Simplified logic diagram for directional supervision element with integrated directional comparison step 8.4.7.9...
Page 493
1MRK 502 066-UUS B Section 8 Current protection In addition to the basic functionality explained above the 2 harmonic blocking can be set in such way to seal-in until residual current disappears. This feature might be required to stabilize EF4PTOC (51N67N) during switching of parallel transformers in the station. In case of parallel transformers there is a risk of sympathetic inrush current.
Page 494
Section 8 1MRK 502 066-UUS B Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component Extract fundamental current component 2ndHarmStab 0-70ms 2ndH_BLOCK_Int BlkParTransf=On a>b Use_PUValue Pickup1> Pickup2> Pickup3> Pickup4> ANSI13000015-1-en.vsd ANSI13000015 V1 EN-US Figure 257: Simplified logic diagram for 2nd harmonic blocking feature and Block for Parallel Transformers feature 8.4.7.10 Switch on to fault feature...
Page 495
1MRK 502 066-UUS B Section 8 Current protection The Under-Time logic always uses the pickup signal from the step 4. The Under-Time logic will normally be set to operate for a lower current level than the SOTF function. The Under-Time logic can also be blocked by the 2 harmonic restraint feature.
Page 496
Section 8 1MRK 502 066-UUS B Current protection signal to communication scheme Directional Check Element 4 step over current Direction INPol element operatingCurrent Element One element for each earthFaultDirection step angleValid I3PDIR DirModeSel enableDir harmRestrBlock Harmonic 1 Restraint Element TRIP ...
1MRK 502 066-UUS B Section 8 Current protection Function Range or value Accuracy Real part of source Z used for current (0.50-1000.00) W/phase polarization Imaginary part of source Z used for (0.50–3000.00) W/phase current polarization Trip time, pickup non-directional at 0 to 2 Min.
Section 8 1MRK 502 066-UUS B Current protection NS4PTOC (4612) can also be used to provide a system backup for example, in the case of the primary protection being out of service due to communication or voltage transformer circuit failure. Directional operation can be combined together with corresponding communication logic in permissive or blocking teleprotection scheme.
1MRK 502 066-UUS B Section 8 Current protection PID-6530-OUTPUTSIGNALS v3 Table 236: NS4PTOC (46I2) Output signals Name Type Description TRIP BOOLEAN General trip signal TRST1 BOOLEAN Trip signal from step 1 TRST2 BOOLEAN Trip signal from step 2 TRST3 BOOLEAN Trip signal from step 3 TRST4 BOOLEAN...
Page 500
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 1 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
Page 501
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description 0.05 - 999.00 0.01 0.05 Time multiplier for the step 2 selected time characteristic IMin2 1.00 - 10000.00 1.00 Minimum current for step 2 t2Min 0.000 - 60.000 0.001 0.000...
Page 502
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Characterist4 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 4 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
Page 503
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description ResetTypeCrv2 Instantaneous Instantaneous Reset curve type for step2 IEC Reset (Instantaneous / IEC / ANSI) ANSI reset tReset2 0.000 - 60.000 0.001 0.020 Reset time delay for step 2 tPCrv2 0.005 - 3.000 0.001...
Page 504
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description tPRCrv4 0.005 - 3.000 0.001 0.500 Param PR for customized inverse reset time curve for step 4 tTRCrv4 0.005 - 100.000 0.001 13.500 Param TR for customized inverse reset time curve for step 4 tCRCrv4 0.1 - 10.0...
Page 505
1MRK 502 066-UUS B Section 8 Current protection where: IA, IB, IC are fundamental frequency phasors of three individual phase currents. is so called operator which gives a phase shift of 120 deg, that is, a = 1∠120 similarly gives a phase shift of 240 deg, that is, a = 1∠240 deg The phasor magnitude is used within the NS4PTOC (4612) protection to compare it with the set Pickup1 , Pickup2 , Pickup3 or Pickup4 ).
Page 506
Section 8 1MRK 502 066-UUS B Current protection The individual steps within the protection can be set as non-directional. When this setting is selected it is then possible via function binary input BLKx (where x indicates the relevant step within the protection) to provide external directional control (that is, torque control) by for example using one of the following functions if available in the IED: •...
Page 507
1MRK 502 066-UUS B Section 8 Current protection ANSI09000684 V1 EN-US Figure 261: Simplified logic diagram for negative sequence overcurrent stage x , where x=1, 2, 3 or 4 NS4PTOC (4612) can be completely blocked from the binary input BLOCK. The pickup signals from NS4PTOC (4612) for each stage can be blocked from the binary input BLKx.
Page 508
Section 8 1MRK 502 066-UUS B Current protection Reverse Area Vpol=-V2 AngleRCA Forward Area Iop = I2 ANSI10000031-1-en.vsd ANSI10000031 V1 EN-US Figure 262: Operating characteristic for fault directional element Two relevant setting parameters for directional supervision element are: INDirPU • Directional element is internally enable to trip as soon as Iop is bigger than 40% of and the directional condition is fulfilled in set direction.
Page 509
1MRK 502 066-UUS B Section 8 Current protection IopDir PUREV a>b REVERSE_Int PUFW a>b IDirPU FORWARD_Int FORWARD_Int AngleRCA polMethod=Voltage VPolMin polMethod=Dual IPolMin VPol I3PDIR polMethod=Current VTPol IPol REVERSE_Int VIPol STAGE1_DIR_Int RNPol Complex STAGE2_DIR_Int Number XNPol STAGE3_DIR_Int STAGE4_DIR_Int BLOCK ANSI07000067-4-en.vsd ANSI07000067 V4 EN-US Figure 263: Simplified logic diagram for directional supervision element with integrated directional comparison step 8.5.8...
Page 510
Section 8 1MRK 502 066-UUS B Current protection Function Range or value Accuracy IBase Minimum trip current, step 1 (1.00 - 10000.00)% of ±1.0% of I at I ≤ I ±1.0% of I at I > I Relay characteristic angle (-180 to 180) degrees ±2.0 degrees (RCA)
Page 511
1MRK 502 066-UUS B Section 8 Current protection magnitude of the phase-to-ground fault current is almost independent of the fault location in the network. Directional residual current can be used to detect and give selective trip of phase-to-ground faults in high impedance grounded networks. The protection uses the residual current component 3I ·...
Page 512
Section 8 1MRK 502 066-UUS B Current protection Phase currents Phase ground voltages ANSI13000013-1-en.vsd ANSI13000013 V1 EN-US Figure 264: Connection of SDEPSDE to analog preprocessing function block Overcurrent functionality uses true 3I0, i.e. sum of GRPxA, GRPxB and GRPxC. For 3I0 to be calculated, connection is needed to all three phase inputs.
Page 513
1MRK 502 066-UUS B Section 8 Current protection 8.6.4 Signals PID-3892-INPUTSIGNALS v6 Table 242: SDEPSDE (67N) Input signals Name Type Default Description GROUP Group signal for current SIGNAL GROUP Group signal for voltage SIGNAL BLOCK BOOLEAN Blocks all the outputs of the function BLKTR BOOLEAN Blocks the trip outputs of the function...
Page 514
Section 8 1MRK 502 066-UUS B Current protection 8.6.5 Settings PID-3892-SETTINGS v6 Table 244: SDEPSDE (67N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OpModeSel 3I0Cosfi 3I0Cosfi Selection of operation mode for 3I03V0Cosfi protection 3I0 and fi...
Page 515
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description t_MinTripDelay 0.000 - 60.000 0.001 0.040 Minimum operate time for IEC IDMT curves, in sec TDIN 0.05 - 2.00 0.01 1.00 IDMT time mult for non-dir res over current protection OpVN Disabled...
Page 516
Section 8 1MRK 502 066-UUS B Current protection 8.6.6 Monitored data PID-3892-MONITOREDDATA v5 Table 248: SDEPSDE (67N) Monitored data Name Type Values (Range) Unit Description INCOSPHI REAL Magnitude of residual current along the polarizing quantity 3I0cos(Fi-RCA) REAL Measured magnitude of the residual current 3I0 REAL Measured magnitude of the residual...
Page 517
1MRK 502 066-UUS B Section 8 Current protection RCA = 0°, ROA = 90° ) - ang(3V = ang(3I en06000648_ansi.vsd ANSI06000648 V1 EN-US Figure 266: RCADir set to 0° RCA = -90°, ROA = 90° ) – ang(V = ang(3I en06000649_ansi.vsd ANSI06000649 V1 EN-US Figure 267: RCADir set to -90°...
Page 518
Section 8 1MRK 502 066-UUS B Current protection When the function picks up, binary output signals PICKUP and PUDIRIN are activated. If the output tDef the binary output signals TRIP signals PICKUP and PUDIRIN remain active for the set delay and TRDIRIN get activated.
Page 519
1MRK 502 066-UUS B Section 8 Current protection RCADir = 0º Trip area Instrument transformer angle error RCAcomp Characteristic after angle compensation (to prot) (prim) ANSI06000651-2-en.vsd ANSI06000651 V2 EN-US Figure 269: Explanation of RCAComp Directional residual power protection measuring 3I ·...
Page 520
Section 8 1MRK 502 066-UUS B Current protection The inverse time delay is defined as: ϕ cos ( TDSN reference ⋅ ⋅ ⋅ ϕ cos ( measured ⋅ ⋅ (Equation 133) EQUATION2032-ANSI V2 EN-US Directional residual current protection measuring 3I and φ...
Page 521
1MRK 502 066-UUS B Section 8 Current protection signal PUREV. Also if the directional function is set to operate for faults in the reverse direction, a fault in the forward direction will give the pickup signal PUFW. Non-directional ground fault current protection SEMOD171963-63 v6 This function will measure the residual current without checking the phase angle.
Page 522
Section 8 1MRK 502 066-UUS B Current protection PUNDIN INNonDirPU 0 - t TRNDIN PUVN UN_PU 0 - t TRVN OpMODE=INcosPhi Pickup_N INCosPhiPU OpMODE=INVNCosPhi PUDIRIN INVNCosPhiPU TRDIRIN Phi in RCA +- ROA TimeChar = InvTime OpMODE=IN and Phi TimeChar = DefTime DirMode = Forw PUFW Forw...
Page 523
1MRK 502 066-UUS B Section 8 Current protection Function Range or value Accuracy VBase Trip level for non- (1.00-200.00)% of ±0.5% of V at V £ V directional residual ±0.5% of V at V > V overvoltage lBase Residual release current for (0.25-200.00)% of ±1.0% of I at I £...
Section 8 1MRK 502 066-UUS B Current protection 8.7.1 Identification M14877-1 v2 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Thermal overload protection, two TRPTTR time constants SYMBOL-A V1 EN-US 8.7.2 Functionality M13243-3 v10 If a power transformer reaches very high temperatures the equipment might be damaged. The insulation within the transformer will experience forced ageing.
Page 525
1MRK 502 066-UUS B Section 8 Current protection PID-4148-OUTPUTSIGNALS v4 Table 251: TRPTTR (49) Output signals Name Type Description TRIP BOOLEAN Trip Signal PICKUP BOOLEAN Pickup signal ALARM1 BOOLEAN First level alarm signal ALARM2 BOOLEAN Second level alarm signal LOCKOUT BOOLEAN Lockout signal WARNING...
Page 526
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description Alarm1 50.0 - 99.0 %Itr 80.0 First alarm level in % of heat content trip value Alarm2 50.0 - 99.0 %Itr 90.0 Second alarm level in % of heat content trip value LockoutReset 10.0 - 95.0...
Page 527
1MRK 502 066-UUS B Section 8 Current protection æ ö = ç ÷ ç ÷ final è ø (Equation 134) EQUATION1171 V1 EN-US where: is the largest phase current is a given reference current If this calculated relative temperature is larger than the relative temperature level corresponding to the set operate (trip) current, then the pickup output signal PICKUP will be activated.
Page 528
Section 8 1MRK 502 066-UUS B Current protection ITrip the output signal reaches the set trip level which corresponds to continuous current equal to TRIP is activated. There is also a calculation of the time to trip with the present current. This calculation is only performed if the final temperature is calculated to be above the operation temperature: ...
Page 529
1MRK 502 066-UUS B Section 8 Current protection Final Temp PICKUP > TripTemp RESET HEATCONT Calculation of heat content Calculation ENMULT of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp LOCKOUT Management of COOLING setting...
Page 530
Section 8 1MRK 502 066-UUS B Current protection 8.7.8 Technical data IP13072-1 v1 M13266-2 v9 Table 255: TRPTTR (49) technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ±1.0% of I Trip time: Time constant τ = (0.10– ±5.0% or ±200 ms whichever is greater 500.00) minutes ∑...
Page 531
1MRK 502 066-UUS B Section 8 Current protection CCRBRF (50BF) can be single- or three-phase initiated to allow use with single pole tripping applications. For the three-phase version of CCRBRF (50BF) the current criteria can be set to trip only if two out of four for example, two phases or one phase plus the residual current pickups. This gives a higher security to the back-up trip command.
Page 532
Section 8 1MRK 502 066-UUS B Current protection PID-3562-OUTPUTSIGNALS v5 Table 257: CCRBRF (50BF) Output signals Name Type Description TRBU BOOLEAN Back-up trip by breaker failure protection function TRBU2 BOOLEAN Second back-up trip by breaker failure protection function TRRET BOOLEAN Retrip by breaker failure protection function TRRET_A BOOLEAN...
Page 533
1MRK 502 066-UUS B Section 8 Current protection Table 260: CCRBRF (50BF) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 8.8.6 Monitored data PID-3562-MONITOREDDATA v5 Table 261: CCRBRF (50BF) Monitored data Name Type...
Page 534
Section 8 1MRK 502 066-UUS B Current protection where at least two currents (phase current and/or residual current) shall be high for breaker failure detection. • The current detection level for the residual current can be set different from the setting of phase current detection.
Page 535
1MRK 502 066-UUS B Section 8 Current protection tStartTimeout which will When one of the two “follow modes” is used, there is a settable timer block the external INITIATE input signal when it times-out. This will automatically also reset the t2 timers and consequently prevent any backup trip command.
Page 536
Section 8 1MRK 502 066-UUS B Current protection PICKUP TRRET Current Check CB Position Check TRBU ANSI18001004-1-en.vsdx ANSI18001004 V1 EN-US Figure 277: Simplified overall logic for FollowStart&Mode BuTripMode setting defines how many measurement elements must operate, when current criterion is used, to determine if the CB is opened or not: •...
Page 537
1MRK 502 066-UUS B Section 8 Current protection StartMode LatchedStart FollowStart FollowStart&Mode PICKUP 30ms int startA BFI_A BLOCK int reset TRBU int startAlarmA tStartTimeout STALARM int startAlarmB From other int startAlarmC phases ANSI18001005-1-en.vsdx ANSI18001005 V1 EN-US Figure 278: Start logic for all three Function Modes of operation a>b a>b IPPU...
Page 538
Section 8 1MRK 502 066-UUS B Current protection StartMode StartMode LatchedStart FollowStart FollowStart&Mode int retrip currPh1Check CB Position Check 30ms 30ms int startA RetripMode RetripMode tPulse tPulse TRRETA UseFunctionMode Always TRRET TRRETB TRRETC tPulse tPulse From other phases ANSI18001008-1-en.vsdx ANSI18001008 V1 EN-US Figure 280: Simplified re-trip logic StartMode StartMode...
Page 539
1MRK 502 066-UUS B Section 8 Current protection 8.8.8 Technical data IP10269-1 v1 M12353-1 v13 Table 262: CCRBRF (50BF) technical data Function Range or value Accuracy lBase Trip phase current (5-200)% of ±1.0% of I at I £ I ±1.0% of I at I > I Reset ratio, phase current >...
Section 8 1MRK 502 066-UUS B Current protection The stub protection STBPTOC (50STB) covers the zone between the current transformers and the open disconnector. The three-phase instantaneous overcurrent function is released from a normally open, 89b auxiliary contact on the line disconnector. 8.9.3 Function block M12524-3 v5...
Page 541
1MRK 502 066-UUS B Section 8 Current protection Table 266: STBPTOC (50STB) Group settings (advanced) Name Values (Range) Unit Step Default Description tDelay 0.000 - 60.000 0.001 0.000 Time delay Table 267: STBPTOC (50STB) Non group settings (basic) Name Values (Range) Unit Step Default...
Page 542
Section 8 1MRK 502 066-UUS B Current protection STUB PROTECTION FUNCTION BLOCK TRIP PU_A PU_B PU_C ENABLE en05000731_ansi.vsd ANSI05000731 V1 EN-US Figure 283: Simplified logic diagram for Stub protection (50STB) 8.9.8 Technical data M12350-1 v11 Table 269: STBPTOC (50STB) technical data Function Range or value Accuracy...
Page 543
1MRK 502 066-UUS B Section 8 Current protection 8.10.1 Identification M14888-1 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pole discrepancy protection CCPDSC 52PD SYMBOL-S V1 EN-US 8.10.2 Functionality M13269-3 v14 An open phase can cause negative and zero sequence currents which cause thermal stress on rotating machines and can cause unwanted operation of zero sequence or negative sequence current functions.
Page 544
Section 8 1MRK 502 066-UUS B Current protection 8.10.4 Signals PID-3525-INPUTSIGNALS v6 Table 270: CCPDSC (52PD) Input signals Name Type Default Description GROUP Three phase currents SIGNAL BLOCK BOOLEAN Block of function BLKDBYAR BOOLEAN Block of function at CB single phase auto re-closing cycle CLOSECMD BOOLEAN Close command to CB...
Page 545
1MRK 502 066-UUS B Section 8 Current protection Table 273: CCPDSC (52PD) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 8.10.6 Monitored data PID-3525-MONITOREDDATA v4 Table 274: CCPDSC (52PD) Monitored data Name Type...
Page 546
Section 8 1MRK 502 066-UUS B Current protection C.B. poleOneClosed from C.B. poleTwoClosed from C.B. poleThreeClosed from C.B. poleOneOpened from C.B. poleTwoOpened from C.B. poleThreeOpened from C.B. en05000288_ansi.vsd ANSI05000288 V1 EN-US Figure 286: Pole discrepancy signals for internal logic In this case the logic is realized within the function. If the inputs are indicating pole discrepancy the trip timer is started.
Page 547
1MRK 502 066-UUS B Section 8 Current protection M13946-3 v7 BLOCK BLKDBYAR PolPosAuxCont 52b_A 52a_A Pole 52b_B 52a_B Disc repancy 52b_C detection 52a_C 150 ms TRIP 0 - t PD signal from CB EXTPDIND CLOSECMD t+ 200 ms OPENCMD Unsymmetry current detection en 05000747 _ansi.vsd ANSI05000747 V1 EN-US...
Page 548
Section 8 1MRK 502 066-UUS B Current protection and in series with one NC contact for each phase connected in parallel) and, after a settable time tTrip (0-60 s), a 150 ms trip pulse command TRIP is generated by the Polediscrepancy interval function (52PD).
Page 549
1MRK 502 066-UUS B Section 8 Current protection 8.11.2 Functionality SEMOD155787-4 v6 The task of a generator in a power plant is to convert mechanical energy available as a torque on a rotating shaft to electric energy. Sometimes, the mechanical power from a prime mover may decrease so much that it does not cover bearing losses and ventilation losses.
Page 551
1MRK 502 066-UUS B Section 8 Current protection 8.11.5 Settings PID-3709-SETTINGS v5 Table 278: GUPPDUP (37) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OpMode1 Disabled UnderPower Operation mode for stage 1 Off / On UnderPower Power1 0.0 - 500.0...
Page 552
Section 8 1MRK 502 066-UUS B Current protection Table 280: GUPPDUP (37) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups Mode A, B, C Pos Seq Selection of measured current and voltage Arone...
Page 553
1MRK 502 066-UUS B Section 8 Current protection The function will use voltage and current phasors calculated in the pre-processing blocks. The apparent complex power is calculated according to chosen formula as shown in table 282. Table 282: Complex power calculation Set value: Mode Formula used for complex power calculation...
Page 554
Section 8 1MRK 502 066-UUS B Current protection activation of any of the two stages a common signal PICKUP will be activated. At trip from any of the two stages also a common signal TRIP will be activated. To avoid instability there is a settable hysteresis in the power function. The absolute hysteresis of Hysteresis1(2) = abs (Power1(2) + drop-power1(2)).
Page 555
1MRK 502 066-UUS B Section 8 Current protection Magnitude % of In compensation IMagComp5 Measured current IMagComp30 IMagComp100 % of In 0-5%: Constant 5-30-100%: Linear >100%: Constant Angle Degrees compensation Measured IAngComp30 current IAngComp5 IAngComp100 % of In ANSI05000652_3_en.vsd ANSI05000652 V3 EN-US Figure 291: Calibration curves The first current and voltage phase in the group signals will be used as reference and the amplitude and angle compensation will be used for related input signals.
Page 556
Section 8 1MRK 502 066-UUS B Current protection 8.12 Directional overpower protection GOPPDOP (32) SEMOD172360-1 v4 8.12.1 Identification SEMOD176574-2 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Directional overpower protection GOPPDOP P > DOCUMENT172362-IMG158942 V2 EN-US 8.12.2 Functionality SEMOD172356-4 v5...
Page 557
1MRK 502 066-UUS B Section 8 Current protection Underpower IED Overpower IED Trip Trip Line Line Margin Margin Tripping point Tripping point without without turbine torque turbine torque ANSI06000315-1-en.vsd ANSI06000315 V1 EN-US Figure 292: Reverse power protection with underpower IED and overpower IED 8.12.3 Function block SEMOD172667-4 v4...
Page 558
Section 8 1MRK 502 066-UUS B Current protection PID-3710-OUTPUTSIGNALS v5 Table 285: GOPPDOP (32) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRIP1 BOOLEAN Trip of stage 1 TRIP2 BOOLEAN Trip of stage 2 PICKUP BOOLEAN Common pickup PICKUP1 BOOLEAN Pickup of stage 1...
Page 559
1MRK 502 066-UUS B Section 8 Current protection Table 287: GOPPDOP (32) Group settings (advanced) Name Values (Range) Unit Step Default Description 0.000 - 0.999 0.001 0.000 Low pass filter coefficient for power measurement, P and Q Hysteresis1 0.2 - 5.0 Absolute hysteresis of stage 1 in % of SBase Hysteresis2...
Page 560
Section 8 1MRK 502 066-UUS B Current protection 8.12.6 Monitored data PID-3710-MONITOREDDATA v4 Table 289: GOPPDOP (32) Monitored data Name Type Values (Range) Unit Description REAL Active power P in MW PPERCENT REAL Active power P in % of SBase REAL MVAr Reactive power Q in MVAr...
Page 561
1MRK 502 066-UUS B Section 8 Current protection Table 290: Complex power calculation Mode Set value: Formula used for complex power calculation A,B,C × × × (Equation 152) EQUATION2038 V1 EN-US Arone × × (Equation 153) EQUATION2039 V1 EN-US PosSeq = ×...
Page 562
Section 8 1MRK 502 066-UUS B Current protection hysteresis should therefore be set to a smaller value. The drop-power value of stage1 can be Power1(2) , Hysteresis1(2) : drop-power1(2) = Power1(2) – Hysteresis1(2) calculated with the For small power1 values the hysteresis1 may not be too big, because the drop-power1(2) would be Power1(2) ) is corrected to the minimal too small.
Page 563
1MRK 502 066-UUS B Section 8 Current protection Magnitude % of In compensation IMagComp5 Measured current IMagComp30 IMagComp100 % of In 0-5%: Constant 5-30-100%: Linear >100%: Constant Angle Degrees compensation Measured IAngComp30 current IAngComp5 IAngComp100 % of In ANSI05000652_3_en.vsd ANSI05000652 V3 EN-US Figure 295: Calibration curves The first current and voltage phase in the group signals will be used as reference and the amplitude and angle compensation will be used for related input signals.
Page 564
Section 8 1MRK 502 066-UUS B Current protection Function Range or value Accuracy Reset time, pickup at 2 to 0.5 x S Min. = 35 ms k = 0.000 Max. = 55 ms Independent time delay to trip for (0.01-6000.00) s ±0.2% or ±40 ms whichever is Step 1 and Step 2 at 0.5 to 2 x S greater...
Page 565
1MRK 502 066-UUS B Section 8 Current protection PID-3479-OUTPUTSIGNALS v5 Table 293: BRCPTOC (46) Output signals Name Type Description TRIP BOOLEAN Operate signal of the protection logic PICKUP BOOLEAN Pickup signal of the protection logic 8.13.5 Settings PID-3479-SETTINGS v5 Table 294: BRCPTOC (46) Group settings (basic) Name Values (Range) Unit...
Page 566
Section 8 1MRK 502 066-UUS B Current protection • The difference in currents between the phase with the lowest current and the phase with the Pickup_ub of the highest phase current highest current is greater than set percentage Pickup_PH • The lowest phase current is below 50% of the minimum setting value The third condition is included to avoid problems in systems involving parallel lines.
1MRK 502 066-UUS B Section 8 Current protection 8.13.8 Technical data SEMOD171939-1 v1 SEMOD175200-2 v7 Table 298: BRCPTOC (46) technical data Function Range or value Accuracy IBase Minimum phase current for operation (5–100)% of ±1.0% of I Unbalance current operation (50–90)% of maximum current ±1.0% of I Independent trip time delay...
Page 568
Section 8 1MRK 502 066-UUS B Current protection delay characteristic which matches the heating characteristic of the generator defined in standard IEEE C50.13. where: is negative sequence current expressed in per unit of the rated generator current is operating time in seconds is a constant which depends of the generators size and design K settings and the sensitivity and capability of detecting and NS2PTOC (46I2) has a wide range of...
Page 569
1MRK 502 066-UUS B Section 8 Current protection PID-3854-OUTPUTSIGNALS v5 Table 300: NS2PTOC (46I2) Output signals Name Type Description TRIP BOOLEAN Common trip signal TRST1 BOOLEAN Trip signal from step 1 TRST2 BOOLEAN Trip signal from step 2 PICKUP BOOLEAN Common start signal PU_ST1 BOOLEAN...
Page 570
Section 8 1MRK 502 066-UUS B Current protection Name Values (Range) Unit Step Default Description tResetDef2 0.000 - 60.000 0.001 0.000 Time delay for reset of definite timer of step 2, in sec 1.0 - 99.0 10.0 Neg. seq. capability value of generator for step 2, in sec t2Min 0.000 - 60.000...
Page 571
1MRK 502 066-UUS B Section 8 Current protection A BLOCK input signal resets NS2PTOC (46I2) momentarily. When the parameter CurveType 1 is set to Inverse , an inverse curve is selected according to K 1. The minimum trip time setting of parameter t1Min and reset time selected value for parameter ResetMultip1 also influence step operation.
Page 572
Section 8 1MRK 502 066-UUS B Current protection Where is the measured negative sequence current is the desired pickup level in pu of rated generator current Pickup ResetMultip is multiplier of the generator capability constant K equal to setting K 1 and thus defines reset time of inverse time characteristic 8.14.7.1 Pickup sensitivity...
Page 573
1MRK 502 066-UUS B Section 8 Current protection PU_ST1 PU_ST2 ALARM 0-tAlarm TRST1 TRIP TRST2 ANSI09000690-3-en.vsd ANSI09000690 V3 EN-US Figure 301: Simplified logic diagram for the PICKUP, ALARM and TRIP signals for NS2PTOC (46I2) 8.14.8 Technical data GUID-E5718F80-556D-4852-A8F2-90E0F578D763 v9 Table 304: NS2PTOC (46I2) technical data Function Range or value Accuracy...
Page 574
Section 8 1MRK 502 066-UUS B Current protection 8.15 Accidental energizing protection for synchronous generator AEGPVOC (50AE) GUID-B8AED221-36B4-45C3-8FD9-713DAAB4A365 v2 8.15.1 Identification GUID-E8C9B9EB-A74D-49DE-A656-4B56772017E2 v2 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Accidental energizing protection for AEGPVOC U<I>...
Page 575
1MRK 502 066-UUS B Section 8 Current protection PID-3459-OUTPUTSIGNALS v6 Table 306: AEGPVOC (50AE) Output signals Name Type Description TRIP BOOLEAN Trip signal from accidental energizing of generator protection BOOLEAN Start signal from accidental energizing of generator protection ENABLED BOOLEAN True when accidental energizing of generator protection is armed 8.15.1.4 Settings...
Page 576
Section 8 1MRK 502 066-UUS B Current protection neutral point side and three phase voltage from the generator terminals. The maximum of the three phase-to-phase voltages and maximum of the three phase currents are measured. 27_pick_up for the period tArm , it is When the maximum phase-to-phase voltage is less than the ensured that the generator is off-line.
Page 577
1MRK 502 066-UUS B Section 8 Current protection Function Range or value Accuracy Trip value, undervoltage (2-150)% of VBase ±0.5% of V at V ≤ V ±0.5% of V at V > V Critical impulse time, undervoltage 10 ms typically at 2 to 0 x V Impulse margin time, undervoltage 15 ms typically Trip value, overvoltage...
Page 579
1MRK 502 066-UUS B Section 8 Current protection 8.16.5 Settings PID-3858-SETTINGS v6 Table 313: VRPVOC (51V) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled Pickup_Curr 2.0 - 5000.0 120.0 Pick up current level in % of IBase Characterist ANSI Ext.
Page 580
Section 8 1MRK 502 066-UUS B Current protection Table 315: VRPVOC (51V) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 8.16.6 Monitored data PID-3858-MONITOREDDATA v5 Table 316: VRPVOC (51V) Monitored data Name Type...
Page 581
1MRK 502 066-UUS B Section 8 Current protection VHighLimit /100* VBase ; Pickup_Curr /100* IBase) . In the first point the factor 0.25 that and ( VBase cannot be changed. multiply Pickup level of the current PickupCurr VDepFact * PickupCurr 0,25 VHighLimit VBase...
Page 582
Section 8 1MRK 502 066-UUS B Current protection 8.16.7.4 Logic diagram GUID-0A1565A4-74E1-4171-968B-50529AABF192 v2 DEF time 0-tDef_OC selected TROC MaxPhCurr PU_OC a>b PickupCurr Inverse Inverse time selected Voltage control or restraint feature MinPh-Ph Voltage ANSI10000214-2-en.vsd ANSI10000214 V2 EN-US Figure 307: Simplified internal logic diagram for overcurrent function DEF time 0-tDef_UV selected...
Page 583
1MRK 502 066-UUS B Section 8 Current protection 8.16.8 Technical data GUID-7EA9731A-8D56-4689-9072-D72D9CDFD795 v7 Table 317: VRPVOC (51V) technical data Function Range or value Accuracy Pickup overcurrent (2.0 - 5000.0)% of IBase ±1.0% of I at I ≤ I ±1.0% of I at I > I Reset ratio, overcurrent >...
Page 584
Section 8 1MRK 502 066-UUS B Current protection 8.17.1 Identification GUID-5D79DC7D-D4DA-47F1-B1FA-5200D8FF08D5 v1 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generator stator overload GSPTTR protection 8.17.2 Functionality GUID-A416C856-E438-4ED4-A43D-D05F718D6A41 v5 The generator overload function, GSPTTR (49S) is used to protect the stator winding against excessive temperature as a result of overcurrents.
Page 585
1MRK 502 066-UUS B Section 8 Current protection PID-3719-OUTPUTSIGNALS v5 Table 319: GSPTTR (49S) Output signals Name Type Description TRIP BOOLEAN General trip signal from the function PICKUP BOOLEAN General pickup signal from the function LOCKOUT BOOLEAN Trip lockout output (latched) 79M BLOCK BOOLEAN Block machine closing command...
Page 586
Section 8 1MRK 502 066-UUS B Current protection Table 322: GSPTTR (49S) Non group settings (basic) Name Values (Range) Unit Step Default Description MeasurCurrent Measured current quantity (RMS or PosSeqNegSeq weighted sum of positive and negative sequence) GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 8.17.6...
Page 587
1MRK 502 066-UUS B Section 8 Current protection Step-up transformer HV- side Excitation transformer alternative measurement points for the stator overload function Field breaker Neutral side ANSI12000012-2-en.vsd ANSI12000012 V2 EN-US Figure 311: Measurement of stator current MeasurCurrent :: The selection of current measurement is done by using the parameter MeasurCurrent = RMS (default);...
Page 588
Section 8 1MRK 502 066-UUS B Current protection The measured current used by the function is available as a service value. Overload characteristics Stator winding temperature increases with the current. Thus, it is logical to apply over current elements with inverse time-current characteristics for overload protection. The function operating characteristic is designed in accordance with the American standard IEEE-C50.13: 2014.
Page 589
1MRK 502 066-UUS B Section 8 Current protection t (s) t_MaxTripDelay tCutOff IBase t_MinTripDelay I (A) IBase IPickup ANSI12000009-1-en.vsd ANSI12000009 V1 EN-US Figure 312: Operating characteristic for overload function t_MaxTripDelay ) and minimum As shown in Figure it is possible to define the maximum ( t_MinTripDelay ) operate time for the function regardless of the level of the measured current.
Page 590
Section 8 1MRK 502 066-UUS B Current protection Imeasured IBase * IPickup Pickup hysteresis THETA ReclsLevTheta TRIP PICKUP tReset ANSI12000014-1-en.vsd ANSI12000014 V1 EN-US Figure 313: Operating principles of the stator overload function Tripping logic This tripping logic provides some additional features regarding blocking and tripping options available within the function.
Page 591
1MRK 502 066-UUS B Section 8 Current protection BLOCK prevents operation of overload feature, at the same time all binary outputs are forced to zero. SETLKOUT forces lockout operation (output LOCKOUT) by external signal RESET resets lockout and forces Theta value to zero Available binary outputs: TRIP, operation of the overload feature PICKUP, current bigger than IPickup level...
Page 594
Section 8 1MRK 502 066-UUS B Current protection 8.18.5 Settings PID-3718-SETTINGS v5 Table 328: GRPTTR (49R) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled IPickup 105.0 - 900.0 110.0 Current pickup value for overload protection ReclsLevTheta 1.0 - 100.0...
Page 595
1MRK 502 066-UUS B Section 8 Current protection Name Values (Range) Unit Step Default Description VrLV 10.0 - 3000.0 400.0 Excitation transformer LV winding rated Ph-Ph voltage in V VrHV 0.10 - 100.00 0.01 11.00 Excitation transformer HV winding rated Ph-Ph voltage in kV PhAngleShift -180 - 180...
Page 596
Section 8 1MRK 502 066-UUS B Current protection block Overload Current characteristic Trip logic measurement block Undercurrent protection for rotor winding block Alarm Ripple Detection IEC12000016-1-en.vsd IEC12000016 V1 EN-US Figure 316: Representation of the rotor overload protection Each of these five sub-blocks will be described in the following sections of this document. Current measurement Three phase currents are measured either on the high voltage side (HV) or on the low voltage side (LV) of the excitation transformer, see Figure317.
Page 597
1MRK 502 066-UUS B Section 8 Current protection Step- up transformer Pri- side (HV) Two alternative Excitation measurement points transformer for the rotor overload function Sec- side(LV) Field breaker ANSI12000019-2-en.vsd ANSI12000019 V2 EN-US Figure 317: Measurement of rotor currents MeasurCurrent : The selection of current measurement is done by using the parameter MeasurCurrent = RMS;...
Page 598
Section 8 1MRK 502 066-UUS B Current protection å (Equation 166) GUID-5D825381-66DE-404D-B3E9-471B13A394A5 V1 EN-US The average DC current value I is used further within the rotor overload function for the operating characteristic calculations and for the service value. • When CT_Location = HV_winding is selected, it means that the used CT is located on the primary, high-voltage side (HV) of the excitation transformer, see Figure317.
Page 599
1MRK 502 066-UUS B Section 8 Current protection is triptime in seconds TD1 is a multiplier (it shall have default value of 33.8 in order to get the operating points as prescribed by the standard, see Table331) I is measured current by the function IBase is base current (rotor winding rated current when DC current is used as measured current) In addition to this equation based operating characteristic, the rotor overload function has some additional cut-off features.
Page 600
Section 8 1MRK 502 066-UUS B Current protection ReclsLevTheta represents the Theta value below which is safe again to re-connect the tripped generator to the network. The output signal PICKUP will reset if the measured current falls below reset level or if BLOCK signal is set to one.
Page 601
1MRK 502 066-UUS B Section 8 Current protection Imeasured IBase * IPickup Pickup hysteresis THETA ReclsLevTheta TRIP PICKUP tReset ANSI12000015-1-en.vsd ANSI12000015 V1 EN-US Figure 319: Operating principles of the rotor overload function Under current protection of rotor winding One undercurrent protection level with definite time delay is available within the function. It can be used to either alarm or trip for low-excitation/loss-of-excitation condition of the machine.
Page 602
Section 8 1MRK 502 066-UUS B Current protection undercurrent feature when machine is disconnected from the network it shall be supervised by appropriate signal (e.g. blocked when generator CB is open). Simplified logic diagram of this feature is given in Figure320. 37 Enable 37 trip delay MeasurCurrent...
Page 603
1MRK 502 066-UUS B Section 8 Current protection Simplified logic diagram for lockout functionality is shown in Figure321. AutoLockout TRIP LOCKOUT SETLKOUT RESET BLOCK IEC12000020-2-en.vsdx IEC12000020 V2 EN-US Figure 321: Trip Lockout logic Alarm ripple detection The rotor winding is provided with DC excitation current through the rectifier bridge and the excitation transformer.
Page 604
Section 8 1MRK 502 066-UUS B Current protection Function Range or value Accuracy Start time, undercurrent at 2 Min = 15 ms — to 0 x I Max = 30 ms Independent time delay for (0.0–600.0) s ±0.2% or ±45 ms whichever is greater undercurrent function at 2 to 0 Technical manual...
Page 605
1MRK 502 066-UUS B Section 9 Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV (27) IP14544-1 v3 9.1.1 Identification M16876-1 v6 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U<...
Page 606
Section 9 1MRK 502 066-UUS B Voltage protection 9.1.4 Signals PID-3586-INPUTSIGNALS v6 Table 333: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase voltages SIGNAL BLOCK BOOLEAN Block of function BLKTR1 BOOLEAN Block of trip signal, step 1 BLK1 BOOLEAN Block of step 1...
Page 607
1MRK 502 066-UUS B Section 9 Voltage protection 9.1.5 Settings PID-3586-SETTINGS v6 Table 335: UV2PTUV (27) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time...
Page 608
Section 9 1MRK 502 066-UUS B Voltage protection Name Values (Range) Unit Step Default Description IntBlkStVal2 1 - 50 Voltage setting for internal blocking in % of VBase, step 2 tBlkUV2 0.000 - 60.000 0.001 0.000 Time delay of internal (low level) blocking for step 2 HystAbs2 0.0 - 50.0...
Page 609
1MRK 502 066-UUS B Section 9 Voltage protection Table 337: UV2PTUV (27) Non group settings (basic) Name Values (Range) Unit Step Default Description ConnType PhN DFT PhN DFT Group selector for connection type PhPh RMS PhN RMS PhPh DFT GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups...
Page 610
Section 9 1MRK 502 066-UUS B Voltage protection When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three. 9.1.7.1 Measurement principle M15326-6 v6 Depending on the set ConnType value, UV2PTUV (27) measures phase-to-ground or phase-to- Pickup1 and Pickup2 .
Page 611
1MRK 502 066-UUS B Section 9 Voltage protection é ù ê ú × TD A ê ú ê ú æ ö < - Vpickup ê × ú ç ÷ è ø ë Vpickup û (Equation 172) EQUATION1609 V1 EN-US When the denominator in the expression is equal to zero the time delay will be infinity. There will CrvSatn is set to compensate for this be an undesired discontinuity.
Page 612
Section 9 1MRK 502 066-UUS B Voltage protection tIReset1 Voltage Measured PICKUP Voltage HystAbs1 TRIP PICKUP1 Time PICKUP TRIP Time Integrator Frozen Timer Time Linearly Instantaneous decreased ANSI055000010‐4‐en.vsdx ANSI05000010 V4 EN-US Figure 324: Voltage profile not causing a reset of the pickup signal for step 1, and inverse time delay at different reset types Technical manual...
Page 613
1MRK 502 066-UUS B Section 9 Voltage protection tIReset1 Voltage PICKUP PICKUP HystAbs1 Measured Voltage TRIP PICKUP 1 Time PICKUP TRIP Time Integrator Frozen Timer Time Linearly Instantaneous decreased ANSI05000011-3-en.vsdx ANSI05000011 V3 EN-US Figure 325: Voltage profile causing a reset of the pickup signal for step 1, and inverse time delay at different reset types Definite timer delay When definite time delay is selected the function will trip as shown in figure 326.
Page 614
Section 9 1MRK 502 066-UUS B Voltage protection tResetn = 0.0s , instantaneous reset of the definite time delayed respectively. Note that by setting stage is ensured. PU_ST1 TRST1 a<b Pickup1 tReset1 ANSI09000785-3-en.vsd ANSI09000785 V3 EN-US Figure 326: Logic diagram for step 1, DT operation Pickup1 PU_ST1 TRST1...
Page 615
1MRK 502 066-UUS B Section 9 Voltage protection Pickup1 PU_ST1 TRST1 tReset1 ANSI10000040-3-en.vsd ANSI10000040 V3 EN-US Figure 328: Example for Definite Time Delay stage1 operation 9.1.7.3 Blocking M15326-20 v7 It is possible to block Two step undervoltage protection UV2PTUV (27) partially or completely, by binary input signals or by parameter settings, where: BLOCK: blocks all outputs...
Page 616
Section 9 1MRK 502 066-UUS B Voltage protection Disconnection Normal voltage Pickup1 Pickup2 tBlkUV1 < t1,t1Min IntBlkStVal1 tBlkUV2 < t2,t2Min IntBlkStVal2 Time Block step 1 Block step 2 en05000466_ansi.vsd ANSI05000466 V1 EN-US Figure 329: Blocking function 9.1.7.4 Design M15326-35 v7 The voltage measuring elements continuously measure the three phase-to-neutral voltages or the three phase-to-phase voltages.
Page 617
1MRK 502 066-UUS B Section 9 Voltage protection Comparator PU_ST1_A VA < V1< Voltage Phase Phase 1 Selector PU_ST1_B OpMode1 Comparator Phase 2 1 out of 3 VB < V1< 2 out of 3 Pickup PU_ST1_C 3 out of 3 Phase 3 Comparator t1Reset...
Page 618
Section 9 1MRK 502 066-UUS B Voltage protection Function Range or value Accuracy Inverse time characteristics for step 1 See table 1085 and step 2, see table 1085 Definite time delay, step 1 at 1.2 to 0 x (0.00-6000.00) s less than 40 ms Definite time delay, step 2 at 1.2 to 0 x (0.000-60.000) s...
Page 620
Section 9 1MRK 502 066-UUS B Voltage protection Name Type Description PICKUP BOOLEAN Common pickup signal PU_ST1 BOOLEAN Common pickup signal from step1 PU_ST1_A BOOLEAN Pickup signal from step1 phase A PU_ST1_B BOOLEAN Pickup signal from step1 phase B PU_ST1_C BOOLEAN Pickup signal from step1 phase C PU_ST2...
Page 621
1MRK 502 066-UUS B Section 9 Voltage protection Name Values (Range) Unit Step Default Description Pickup2 1.0 - 200.0 150.0 Voltage pickup value (Definite-Time & Inverse-Time curve) in % of VBase, step 2 0.000 - 60.000 0.001 5.000 Definitive time delay of step 2 t2Min 0.000 - 60.000 0.001...
Page 622
Section 9 1MRK 502 066-UUS B Voltage protection Name Values (Range) Unit Step Default Description DCrv2 0.000 - 60.000 0.001 0.000 Parameter D for customer programmable curve for step 2 PCrv2 0.000 - 3.000 0.001 1.000 Parameter P for customer programmable curve for step 2 CrvSat2 0 - 100...
Page 623
1MRK 502 066-UUS B Section 9 Voltage protection > ⋅ Vpickup VBase kV ) / 3 (Equation 174) EQUATION1610 V2 EN-US and operation for phase-to-phase voltage over: > × Vpickup (%) VBase(kV) (Equation 175) EQUATION1992 V1 EN-US When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
Page 624
Section 9 1MRK 502 066-UUS B Voltage protection ⋅ 0 035 V Vpickup − > ⋅ − Vpickup > (Equation 177) ANSIEQUATION2287 V3 EN-US The type C curve is described as: ⋅ 0 035 V Vpickup − > ⋅ − Vpickup >...
Page 625
1MRK 502 066-UUS B Section 9 Voltage protection Voltage IDMT Voltage Time ANSI05000016-2-en.vsd ANSI05000016 V2 EN-US Figure 332: Voltage used for the inverse time characteristic integration Operation of the trip signal requires that the overvoltage condition continues for at least the user t1 and t2 for definite time mode (DT) and by set time delay.
Page 626
Section 9 1MRK 502 066-UUS B Voltage protection tIReset1 tIReset1 Voltage PICKUP TRIP PU_Overvolt1 HystAbs1 Measured Voltage Time PICKUP TRIP Time Linearly Integrator decreased Frozen Timer Time Instantaneous ANSI05000019-3-en.vsd ANSI05000019 V3 EN-US Figure 333: Voltage profile not causing a reset of the PICKUP signal for step 1, and inverse time delay at different reset types Technical manual...
Page 627
1MRK 502 066-UUS B Section 9 Voltage protection tIReset1 Voltage PICKUP TRIP PICKUP HystAbs1 Pickup1 Measured Voltage Time PICKUP TRIP Time Integrator Frozen Timer Time Instantaneous Linearly decreased ANSI05000020‐3‐en.vsdx ANSI05000020 V3 EN-US Figure 334: Voltage profile causing a reset of the PICKUP signal for step 1, and inverse time delay at different reset types Definite time delay When definite time delay is selected, the function will trip as shown in figure 335.
Page 628
Section 9 1MRK 502 066-UUS B Voltage protection PU_ST1 tReset1 a>b TRST1 Vpickup> Delay Delay ANSI10000100-2-en.vsd ANSI10000100 V2 EN-US Figure 335: Detailed logic diagram for step 1, definite time delay, DT operation Pickup1 PICKUP TRIP tReset1 ANSI10000037-2-en.vsd ANSI10000037 V2 EN-US Figure 336: Example for step 1, Definite Time Delay stage 1 reset Technical manual...
Page 629
1MRK 502 066-UUS B Section 9 Voltage protection Pickup1 PICKUP TRIP tReset1 ANSI10000038-2-en.vsd ANSI10000038 V2 EN-US Figure 337: Example for Definite Time Delay stage 1 operation 9.2.7.3 Blocking M15330-20 v7 It is possible to block Two step overvoltage protection OV2PTOV, (59) partially or completely, by binary input signals where: BLOCK: blocks all outputs...
Page 630
Section 9 1MRK 502 066-UUS B Voltage protection Comparator PU_ST1_A VA > Phase A Voltage Phase Pickup 1 Selector PU_ST1_B Comparator OpMode1 Phase B VB > 1 out of 3 Pickup 1 Pickup PU_ ST1_C 2 out of 3 Phase C 3 out of 3 Comparator t1Reset...
Page 631
1MRK 502 066-UUS B Section 9 Voltage protection 9.2.8 Technical data IP13013-1 v1 M13304-1 v12 Table 346: OV2PTOV (59) technical data Function Range or value Accuracy VBase Trip voltage, step 1 and 2 (1.0-200.0)% of ±0.5% of V at V ≤ V ±0.5% of V at V >...
Page 632
Section 9 1MRK 502 066-UUS B Voltage protection Two step residual overvoltage protection ROV2PTOV (59N) function calculates the residual voltage from the three-phase voltage input transformers or measures it from a single voltage input transformer fed from a broken delta or neutral point voltage transformer. ROV2PTOV (59N) has two voltage steps, each with inverse or definite time delay.
Page 633
1MRK 502 066-UUS B Section 9 Voltage protection 9.3.5 Settings PID-3531-SETTINGS v5 Table 349: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time...
Page 634
Section 9 1MRK 502 066-UUS B Voltage protection Name Values (Range) Unit Step Default Description ACrv1 0.005 - 200.000 0.001 1.000 Parameter A for customer programmable curve for step 1 BCrv1 0.50 - 100.00 0.01 1.00 Parameter B for customer programmable curve for step 1 CCrv1 0.0 - 1.0...
Page 635
1MRK 502 066-UUS B Section 9 Voltage protection 9.3.7 Operation principle M15331-3 v7 Two step residual overvoltage protection ROV2PTOV (59N) is used to detect high single-phase voltage, such as high residual voltage, also called 3V . The residual voltage can be measured directly from a voltage transformer in the neutral of a power transformer or from a three-phase voltage transformer, where the secondary windings are connected in an open delta.
Page 636
Section 9 1MRK 502 066-UUS B Voltage protection × 0.035 æ ö > V Vpickup × ç ÷ > Vpickup è ø (Equation 182) ANSIEQUATION2423 V1 EN-US The type C curve is described as: × 0.035 æ > ö V Vpickup ×...
Page 637
1MRK 502 066-UUS B Section 9 Voltage protection tIReset1 tIReset1 Voltage PICKUP TRIP PU_Overvolt1 HystAbs1 Measured Voltage Time PICKUP TRIP Time Linearly Integrator decreased Frozen Timer Time Instantaneous ANSI05000019-3-en.vsd ANSI05000019 V3 EN-US Figure 340: Voltage profile not causing a reset of the PICKUP signal for step 1, and inverse time delay Technical manual...
Page 638
Section 9 1MRK 502 066-UUS B Voltage protection tIReset1 Voltage PICKUP TRIP PICKUP HystAbs1 Pickup1 Measured Voltage Time PICKUP TRIP Time Integrator Frozen Timer Time Instantaneous Linearly decreased ANSI05000020‐3‐en.vsdx ANSI05000020 V3 EN-US Figure 341: Voltage profile causing a reset of the PICKUP signal for step 1, and inverse time delay Definite timer delay When definite time delay is selected, the function will trip as shown in figure 342.
Page 639
1MRK 502 066-UUS B Section 9 Voltage protection PU_ST1 tReset1 a>b TRST1 Vpickup> Delay Delay ANSI10000100-2-en.vsd ANSI10000100 V2 EN-US Figure 342: Detailed logic diagram for step 1, Definite time delay, DT operation Pickup1 PICKUP TRIP tReset1 ANSI10000037-2-en.vsd ANSI10000037 V2 EN-US Figure 343: Example for Definite Time Delay stage 1 reset Technical manual...
Page 640
Section 9 1MRK 502 066-UUS B Voltage protection Pickup1 PICKUP TRIP tReset1 ANSI10000038-2-en.vsd ANSI10000038 V2 EN-US Figure 344: Example for Definite Time Delay stage 1 operation 9.3.7.3 Blocking M15331-18 v6 It is possible to block Two step residual overvoltage protection ROV2PTOV (59N) partially or completely, by binary input signals where: BLOCK: blocks all outputs...
Page 642
Section 9 1MRK 502 066-UUS B Voltage protection Function Range or value Accuracy Trip time, pickup at 0 to 1.2 x V Min. = 20 ms Max. = 35 ms Reset time, pickup at 1.2 to 0 x V Min. = 5 ms Max.
Page 643
1MRK 502 066-UUS B Section 9 Voltage protection 9.4.4 Signals PID-3514-INPUTSIGNALS v5 Table 354: OEXPVPH (24) Input signals Name Type Default Description GROUP Current connection SIGNAL GROUP Voltage connection SIGNAL BLOCK BOOLEAN Block of function RESET BOOLEAN Reset operation PID-3514-OUTPUTSIGNALS v5 Table 355: OEXPVPH (24) Output signals Name Type...
Page 644
Section 9 1MRK 502 066-UUS B Voltage protection Table 357: OEXPVPH (24) Group settings (advanced) Name Values (Range) Unit Step Default Description t1_UserCurve 0.00 - 9000.00 0.01 7200.00 Time delay t1 (longest) for tailor made curve, in sec t2_UserCurve 0.00 - 9000.00 0.01 3600.00 Time delay t2 for tailor made curve, in sec...
Page 645
1MRK 502 066-UUS B Section 9 Voltage protection Overexcitation results from excessive applied voltage, possibly in combination with below-normal frequency. Such conditions may occur when a transformer unit is loaded, but are more likely to arise when the transformer is unloaded, or when loss of load occurs. Transformers directly connected to generators are in particular danger to experience overexcitation conditions.
Page 646
Section 9 1MRK 502 066-UUS B Voltage protection Pickup1 £ (Equation 189) ANSIEQUATION2297 V2 EN-US where: Pickup1 is the maximum continuously allowed voltage at no load, and rated frequency. Pickup1 is a setting parameter. The setting range is 100% to 180%. If the user does not know Pickup1 = 110 % given by the IEC 60076-1 standard exactly what to set, then the default value for shall be used.
Page 647
1MRK 502 066-UUS B Section 9 Voltage protection remain essentially unchanged. The important voltage is the voltage between the two ends of each winding. 9.4.7.1 Measured voltage M5854-39 v8 If one phase-to-phase voltage is available from the side where overexcitation protection is applied, then Overexcitation protection OEXPVPH (24) shall be set to measure this voltage, MeasuredV .
Page 648
Section 9 1MRK 502 066-UUS B Voltage protection × × 0.18 0.18 æ ö overexcitation ç ÷ è ø PUV Hz (Equation 191) ANSIEQUATION2298 V2 EN-US where: the relative excitation Pickup1 is maximum continuously allowed voltage at no load, and rated frequency, in pu and is time multiplier for inverse time functions, see figure 348.
Page 649
1MRK 502 066-UUS B Section 9 Voltage protection Inverse delays as per figure 348, can be modified (limited) by two special definite delay settings, t_MaxTripDelay and t_MinTripDelay , see figure 347. namely delay in s t_MaxTrip Delay under - inverse delay law excitation overexcitation t_MinTripDelay...
Page 651
1MRK 502 066-UUS B Section 9 Voltage protection The upper V/Hz limit for the Tailor-Made characteristic is always the greater value among the following two values in %: Pickup1 • 1.10 x Pickup2 • The reason is to prevent the loss of accuracy of the Tailor-Made characteristic when small set value Pickup2 is used.
Page 652
Section 9 1MRK 502 066-UUS B Voltage protection M p.u. = Vn fn (Equation 196) ANSIEQUATION2299 V1 EN-US If VPERHZ value is less than setting Pickup1 (in %), the power transformer is underexcited. If Pickup1 (in %), the excitation is exactly equal to the power transformer VPERHZ is equal to Pickup1 , the protected power transformer is continuous capability.
1MRK 502 066-UUS B Section 9 Voltage protection Simplification of the diagram is in the way the IEEE and Tailor-made delays are calculated. The cooling process is not shown. It is not shown that voltage and frequency are separately checked against their respective limit values.
Section 9 1MRK 502 066-UUS B Voltage protection 9.5.3 Function block SEMOD159374-4 v2 VDCPTOV (60) V3P1* TRIP V3P2* PICKUP BLOCK ALARM V1LOW V2LOW VDIFF_A VDIFF_B VDIFF_C ANSI06000528-2-en.vsd ANSI06000528 V2 EN-US Figure 351: VDCPTOV (60) function block 9.5.4 Signals PID-3591-INPUTSIGNALS v5 Table 361: VDCPTOV (60) Input signals Name Type...
Page 655
1MRK 502 066-UUS B Section 9 Voltage protection 9.5.5 Settings PID-3591-SETTINGS v5 Table 363: VDCPTOV (60) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled BlkDiffAtVLow Block operation at low voltage VDTrip 2.0 - 100.0 Operate level, in % of VBase tTrip 0.000 - 60.000...
Page 656
Section 9 1MRK 502 066-UUS B Voltage protection 9.5.7 Operation principle SEMOD153866-61 v4 The Voltage differential protection function VDCPTOV (60) is based on comparison of the magnitudes of the two voltages connected in each phase. Possible differences between the ratios of the two Voltage/Capacitive voltage transformers can be compensated for with a ratio correction factors RF_X .
Page 657
1MRK 502 066-UUS B Section 9 Voltage protection VDTrip_A VDTrip_B 0-tTrip TRIP 0-tReset VDTrip_C PICKUP VDAlarm_A VDAlarm_B 0-tAlarm ALARM VDAlarm_C V1Low_A 0-tAlarm V1Low_B V1LOW V1Low_C BlkDiffAtULow V2Low_A 0-t1 V2LOW V2Low_B V2Low_C BLOCK en06000382_2_ansi.vsd ANSI06000382 V3 EN-US Figure 352: Principle logic for Voltage differential function VDCPTOV (60) 9.5.8 Technical data SEMOD166919-2 v6...
Page 658
Section 9 1MRK 502 066-UUS B Voltage protection 100% Stator ground fault protection, 3rd harmonic based STEFPHIZ (59THD) SEMOD156719-1 v3 9.6.1 Identification SEMOD158987-2 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number 100% Stator ground fault STEFPHIZ 59THD protection, 3rd harmonic based...
Page 659
1MRK 502 066-UUS B Section 9 Voltage protection CB 1 may not exist CB 1 may not exist stator winding stator winding x E3 x E3 (1- x) E3 (1- x) E3 CB 1 CB 1 CB 2 CB 2 Transformer 1 - x 1 - x...
Section 9 1MRK 502 066-UUS B Voltage protection 9.6.4 Signals PID-3576-INPUTSIGNALS v3 Table 368: STEFPHIZ (59THD) Input signals Name Type Default Description U3PNEUT GROUP Voltage connection neutral side SIGNAL U3PTERM GROUP Open-Delta connection on Terminal side SIGNAL BOOLEAN TRUE means breaker between gen. & trafo is closed BLOCK BOOLEAN Complete block of the stator ground fault protecion function...
Page 661
1MRK 502 066-UUS B Section 9 Voltage protection Name Values (Range) Unit Step Default Description FactorCBopen 1.00 - 10.00 0.01 1.00 Beta is multiplied by this factor when CB is open VN3rdHPU 0.5 - 10.0 Pickup 3rd Harm V< protection (when activated) % of VB/1,732 VT3BlkLevel 0.1 - 10.0...
Page 662
Section 9 1MRK 502 066-UUS B Voltage protection 9.6.7 Operation principle SEMOD155869-4 v6 The protection is a combination of the 95% fundamental frequency ground fault protection and the 3 harmonic based stator earth fault protection, (STEFPHIZ, 59THD). The 3 harmonic based 100% stator ground fault protection is using the 3 harmonic voltage generated by the generator itself.
Page 663
1MRK 502 066-UUS B Section 9 Voltage protection neutral point (V ) will be close to zero in case of a stator ground-fault close to the neutral. This fact alone can be used as an indication of stator ground-fault. To enable better sensitivity and stability also measurement of the generator's 3 harmonic voltage V is also used.
Page 664
Section 9 1MRK 502 066-UUS B Voltage protection Samples: Generator TRIP terminal harmonic Stator Complex VT3 voltage Fourier Ground filtering Fault TRIP3H giving VT3 detection harmonic TRIPVN Pickup based Pickup and trip logic PU3H Samples: Generator PU_VN neutral point harmonic Complex VN3 voltage Fourier...
Page 665
1MRK 502 066-UUS B Section 9 Voltage protection Beta ç V3N ç b ³ a ç V3N+V3T ç PU3H TRIP3H VT3BlkLevel a ³ b ç V3T ç PICKUP TRIP VNFundPU PU_VN b ³ a TRIPVN ANSI07000001-2-en.vsd ANSI07000001 V2 EN-US Figure 357: Simplified Pickup and Trip logical diagram of the 100% Stator earth fault protection, 3rd harmonic based STEFPHIZ (59THD) protection There are two different cases of generator block configuration;...
Page 666
Section 9 1MRK 502 066-UUS B Voltage protection Beta which is is deactivated and the sensitivity is changed. This is done by changing the factor FactorCBopen . multiplied with a set constant In addition to the binary outputs also some analog outputs are available from the protection function in order to enable easier commissioning: E3: the magnitude of the 3 harmonic voltage induced in the stator given in primary volts...
Page 667
1MRK 502 066-UUS B Section 9 Voltage protection 9.7.2 Functionality SEMOD171457-5 v7 Loss of voltage check LOVPTUV (27) is suitable for use in networks with an automatic system restoration function. LOVPTUV (27) issues a three-pole trip command to the circuit breaker, if all three phase voltages fall below the set value for a time longer than the set time and the circuit breaker remains closed.
Page 668
Section 9 1MRK 502 066-UUS B Voltage protection Table 377: LOVPTUV (27) Group settings (advanced) Name Values (Range) Unit Step Default Description tPulse 0.050 - 60.000 0.001 0.150 Duration of TRIP pulse tBlock 0.000 - 60.000 0.001 5.000 Time delay to block when all 3ph voltages are not low tRestore 0.000 - 60.000...
Page 669
1MRK 502 066-UUS B Section 9 Voltage protection TEST TEST-ACTIVE Blocked = Yes PICKUP BLOCK Function Enable tPulse TRIP 0-tTrip PU_V_A PU_V_B only 1 or 2 phases are low for Latched at least 10 s (not three) PU_V_C Enable 0-tBlock CBOPEN Reset Enable VTSU...
Page 670
Section 9 1MRK 502 066-UUS B Voltage protection 9.7.7 Technical data SEMOD175210-2 v6 Table 379: LOVPTUV (27) technical data Function Range or value Accuracy Trip voltage (1–100)% of VBase ±0.5% of V Pulse timer when (0.050–60.000) s ±0.2% or ±15 ms whichever is greater disconnecting all three phases Time delay for enabling the (0.000–60.000) s...
Page 671
1MRK 502 066-UUS B Section 10 Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF (81) IP15746-1 v3 10.1.1 Identification M14865-1 v5 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN-US 10.1.2 Functionality...
Page 672
Section 10 1MRK 502 066-UUS B Frequency protection 10.1.4 Signals PID-3901-INPUTSIGNALS v6 Table 380: SAPTUF (81L) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKTRIP BOOLEAN Blocking operate output BLKREST BOOLEAN Blocking restore output...
Page 673
1MRK 502 066-UUS B Section 10 Frequency protection Table 383: SAPTUF (81L) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 10.1.6 Monitored data PID-3901-MONITOREDDATA v6 Table 384: SAPTUF (81L) Monitored data Name Type...
Page 674
Section 10 1MRK 502 066-UUS B Frequency protection Trip signal issuing requires that the underfrequency condition continues for at least the user set tDelay . If the PICKUP condition, with respect to the measured frequency ceases during time delay tReset , the this user set delay time, and is not fulfilled again within a user defined reset time, PICKUP output is reset, after that the defined reset time has elapsed.
Page 675
1MRK 502 066-UUS B Section 10 Frequency protection Exponenent V [% of VBase] en05000075_ansi.vsd ANSI05000075 V1 EN-US Figure 362: Voltage dependent inverse time characteristics for underfrequency protection SAPTUF (81). The time delay to trip is plotted as a function of the measured voltage, for the Exponent = 0, 1, 2, 3, 4 respectively.
Page 676
Section 10 1MRK 502 066-UUS B Frequency protection Block BLKDMAGN BLOCK Comparator V < IntBlockLevel Voltage Time integrator Pickup PICKUP TimerOperation Mode & PICKUP Selector Trip Frequency Comparator Output f < PuFrequency TimeDlyOperate Logic TRIP TimeDlyReset TRIP 100 ms Comparator RESTORE TimeDlyRestore f >...
Page 677
1MRK 502 066-UUS B Section 10 Frequency protection Function Range or value Accuracy Reset time, definite time function at f - 0.02 (0.000-60.000)s ±0.2% or ±120 ms whichever is greater Hz to f + 0.02 Hz Voltage dependent time delay Settings: ±1.0% or ±120 ms whichever is VNom=(50-150)% of V...
Page 678
Section 10 1MRK 502 066-UUS B Frequency protection 10.2.3 Function block M14956-3 v5 SAPTOF (81) V3P* TRIP BLOCK PICKUP BLKTRIP BLKDMAGN FREQ ANSI06000280-2-en.vsd ANSI06000280 V2 EN-US Figure 364: SAPTOF (81) function block 10.2.4 Signals PID-3897-INPUTSIGNALS v6 Table 386: SAPTOF (81H) Input signals Name Type Default...
Page 679
1MRK 502 066-UUS B Section 10 Frequency protection 10.2.6 Monitored data PID-3897-MONITOREDDATA v6 Table 390: SAPTOF (81H) Monitored data Name Type Values (Range) Unit Description VLevel REAL Level of measured voltage FREQ REAL Measured frequency 10.2.7 Operation principle M14958-3 v6 Overfrequency protection SAPTOF (81) is used to detect high power system frequency.
Page 680
Section 10 1MRK 502 066-UUS B Frequency protection 10.2.7.3 Blocking M14958-13 v6 It is possible to block overfrequency protection SAPTOF (81) partially or completely, by binary input signals or by parameter settings, where: BLOCK: blocks all outputs BLKTRIP: blocks the TRIP output MinValFreqMeas in the preprocessing If the measured voltage level decreases below the setting of function both the PICKUP and the TRIP outputs are blocked.
Page 681
1MRK 502 066-UUS B Section 10 Frequency protection 10.2.8 Technical data M14964-1 v12 Table 391: SAPTOF (81) technical data Function Range or value Accuracy Trip value, pickup function at symmetrical (35.00-90.00) Hz ±2.0 mHz three-phase voltage Trip time, pickup at f -0.02 Hz to f +0.02 Min.
Page 682
Section 10 1MRK 502 066-UUS B Frequency protection 10.3.3 Function block M14968-3 v6 SAPFRC (81) V3P* TRIP BLOCK PICKUP BLKTRIP RESTORE BLKREST BLKDMAGN ANSI06000281-2-en.vsd ANSI06000281 V2 EN-US Figure 366: SAPFRC (81) function block 10.3.4 Signals PID-3862-INPUTSIGNALS v6 Table 392: SAPFRC (81R) Input signals Name Type Default...
Page 683
1MRK 502 066-UUS B Section 10 Frequency protection 10.3.6 Monitored data PID-3862-MONITOREDDATA v1 Table 395: SAPFRC (81R) Monitored data Name Type Values (Range) Unit Description STARTDUR REAL Start duration in percents of the total operation time 10.3.7 Operation principle M14970-3 v8 Rate-of-change frequency protection SAPFRC (81) is used to detect fast power system frequency changes at an early stage.
Page 684
Section 10 1MRK 502 066-UUS B Frequency protection and no output will be given. The restore functionality is only active for lowering frequency conditions and the restore sequence is disabled if a new negative frequency gradient is detected RestoreFreq and tRestore . during the restore period, defined by the settings 10.3.7.3 Blocking...
Page 685
1MRK 502 066-UUS B Section 10 Frequency protection BLOCK BLKTRIP BLKRESET BLOCK BLKDMAGN Voltage Comparator V < IntBlockLevel Pickup Rate-of-Change Time integrator & Comparator of Frequency Trip Definite Time Delay Output [PickupFreqGrad<0 PICKUP PICKUP Logic TimeDlyOperate df/dt < PickupFreqGrad] TimeDlyReset [PickupFreqGrad>0 TRIP df/dt >...
Page 686
Section 10 1MRK 502 066-UUS B Frequency protection 10.4 Frequency time accumulation protection function FTAQFVR (81A) GUID-124A1F91-44C0-4DB6-8603-CC8CA19AE2A6 v3 10.4.1 Identification GUID-87605DA0-EAA6-4A6C-BF03-7FDB187E1B29 v2 Function description IEC 61850 IEC 60617 ANSI/ identification identification IEEEidentificatio Frequency time accumulation FTAQFVR f<> protection 10.4.2 Functionality GUID-020CE8CF-9BEA-455D-ACBD-13023B93B4D1 v4 Frequency time accumulation protection FTAQFVR (81A) is based on measured system frequency and time counters.
Page 687
1MRK 502 066-UUS B Section 10 Frequency protection 10.4.4 Signals PID-3229-INPUTSIGNALS v9 Table 397: FTAQFVR (81A) Input signals Name Type Default Description GROUP Group signal for three phase current SIGNAL GROUP Group signal for three phase voltage SIGNAL BLOCK BOOLEAN Block of function CBCLOSE BOOLEAN...
Page 688
Section 10 1MRK 502 066-UUS B Frequency protection Name Values (Range) Unit Step Default Description CBCheck Disable Enable Enabling the generator start or stop Enable detection logic PickupCurrentLevel 5.0 - 100.0 10.0 Threshold current value of generator in percentage of base current EnaVoltCheck Disable Enable...
Page 689
1MRK 502 066-UUS B Section 10 Frequency protection FTAQFVR (81A) function will block BFI_3P signal activation and Accumulation of time under two following conditions even if the system frequency falls within set band limits. • When the generator is not synchronized as indicated by the CBOPEN signal input: Generator currents are considered to detect whether the generator is supplying its unit auxiliary supply transformers or not.
Page 690
Section 10 1MRK 502 066-UUS B Frequency protection Comparator FreqHighLimit <= ERROR FreqLowLimit Then ERROR FREQ FREQ Comparator FREQOK FREQOK f <= FreqHighLimit f > FreqLowLimit VOLTOK VOLTOK Then PICKUP BFI_3P Accumulation time Comparator counter <= VHighLimit TRIPACC PICKUP Continuous time Signal Routing >= VLowLimit Based on...
Page 691
1MRK 502 066-UUS B Section 10 Frequency protection GUID-E8D0EE7C-D7B8-46C3-9C0D-363FFC75DE93 v4 Table 402: FTAQFVR (81A) technical data Function Range or value Accuracy Trip value, frequency high limit level (35.00 – 90.00) Hz ±2.0 mHz at symmetrical three phase voltage Trip value, frequency low limit level (30.00 –...
Page 693
1MRK 502 066-UUS B Section 11 Multipurpose protection Section 11 Multipurpose protection 11.1 General current and voltage protection CVGAPC IP14552-1 v2 11.1.1 Identification M14886-2 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number General current and voltage CVGAPC 2(I>/U<) protection...
Page 694
Section 11 1MRK 502 066-UUS B Multipurpose protection There is a risk that the current into the generator at inadvertent energization will be limited so that the “normal” overcurrent or underimpedance protection will not detect the dangerous situation. The delay of these protection functions might be too long. For big and important machines, fast protection against inadvertent energizing should, therefore, be included in the protective scheme.
Page 695
1MRK 502 066-UUS B Section 11 Multipurpose protection Name Type Default Description BLKUC1TR BOOLEAN Block of trip for under current function UC1 BLKUC2 BOOLEAN Block of under current function UC2 BLKUC2TR BOOLEAN Block of trip for under current function UC2 BLKOV1 BOOLEAN Block of over voltage function OV1...
Page 696
Section 11 1MRK 502 066-UUS B Multipurpose protection Name Type Description ICOSFI REAL Measured current multiplied with cos (Phi) VOLTAGE REAL Measured voltage value VIANGLE REAL Angle between voltage and current 11.1.5 Settings PID-3857-SETTINGS v7 Table 405: CVGAPC Group settings (basic) Name Values (Range) Unit...
Page 697
1MRK 502 066-UUS B Section 11 Multipurpose protection Name Values (Range) Unit Step Default Description RestrCurrCoeff 0.00 - 5.00 0.01 0.00 Restraining current coefficient RCADir -180 - 180 Relay Characteristic Angle ROADir 1 - 90 Relay Operate Angle LowVolt_VM 0.0 - 5.0 Below this level in % of VBase setting ActLowVolt takes over Operation_OC1...
Page 698
Section 11 1MRK 502 066-UUS B Multipurpose protection Name Values (Range) Unit Step Default Description ActLowVolt1_VM Non-directional Non-directional Low voltage level action for Dir_OC1 Block (Nodir, Blk, Mem) Memory Operation_OC2 Disabled Disabled Disable/Enable Operation od OC2 Enabled PickupCurr_OC2 2.0 - 5000.0 120.0 Operate current level for OC2 in % of IBase CurveType_OC2...
Page 699
1MRK 502 066-UUS B Section 11 Multipurpose protection Name Values (Range) Unit Step Default Description EnBlkLowI_UC1 Disabled Disabled Enable internal low current level blocking Enabled for UC1 BlkLowCurr_UC1 0 - 150 Internal low current blocking level for UC1 in % of IBase PickupCurr_UC1 2.0 - 150.0 70.0...
Page 700
Section 11 1MRK 502 066-UUS B Multipurpose protection Name Values (Range) Unit Step Default Description tMin_OV2 0.00 - 6000.00 0.01 0.05 Minimum operate time for Inverse-Time curves for OV2 TD_OV2 0.05 - 999.00 0.01 0.30 Time multiplier for the dependent time delay for OV2 Operation_UV1 Disabled...
Page 701
1MRK 502 066-UUS B Section 11 Multipurpose protection Table 406: CVGAPC Group settings (advanced) Name Values (Range) Unit Step Default Description MultPU_OC1 1.0 - 10.0 Multiplier for scaling the current setting value for OC1 ResCrvType_OC1 Instantaneous Instantaneous Selection of reset curve type for OC1 IEC Reset ANSI reset tResetDef_OC1...
Page 702
Section 11 1MRK 502 066-UUS B Multipurpose protection Name Values (Range) Unit Step Default Description tResetDef_OV1 0.00 - 6000.00 0.01 0.00 Reset time delay in sec for definite time use of OV1 tResetIDMT_OV1 0.00 - 6000.00 0.01 0.00 Reset time delay in sec for Inverse-Time curves for OV1 A_OV1 0.005 - 999.000...
Page 703
1MRK 502 066-UUS B Section 11 Multipurpose protection Name Values (Range) Unit Step Default Description P_UV1 0.001 - 10.000 0.001 0.020 Parameter P for customer programmable curve for UV1 ResCrvType_UV2 Instantaneous Instantaneous Selection of reset curve type for UV2 Frozen timer Linearly decreased tResetDef_UV2...
Page 704
Section 11 1MRK 502 066-UUS B Multipurpose protection 11.1.7 Operation principle 11.1.7.1 Measured quantities within CVGAPC M13751-3 v3 General current and voltage protection (CVGAPC) function is always connected to three-phase current and three-phase voltage input in the configuration tool, but it will always measure only one current and one voltage quantity selected by the end user in the setting tool.
Page 705
1MRK 502 066-UUS B Section 11 Multipurpose protection Table 410: Voltage selection for CVGAPC function Set value for the parameter Comment VoltageInput PhaseA CVGAPC function will measure the phase A voltage phasor PhaseB CVGAPC function will measure the phase B voltage phasor PhaseC CVGAPC function will measure the phase C voltage phasor PosSeq...
Page 706
Section 11 1MRK 502 066-UUS B Multipurpose protection Table 411: Restraint current selection for CVGAPC function Set value for the RestrCurr Comment parameter PosSeq CVGAPC function will measure internally calculated positive sequence current phasor NegSeq CVGAPC function will measure internally calculated negative sequence current phasor 3ZeroSeq CVGAPC function will measure internally calculated zero sequence current phasor multiplied by factor 3...
Page 707
1MRK 502 066-UUS B Section 11 Multipurpose protection This feature will simple prevent overcurrent step pickup if the second-to-first harmonic ratio in the measured current exceeds the set level. Directional feature M13751-263 v5 The overcurrent protection step operation can be made dependent on the relevant phase angle between measured current phasor (see table 409) and measured voltage phasor (see table 410).
Page 708
Section 11 1MRK 502 066-UUS B Multipurpose protection V=-3V0 RCADir I=3Io Ipickup ROADir Operate region mta line en05000252_anis.vsd IEC05000252-ANIS V1 EN-US Figure 371: I & V directional operating principle for CVGAPC function where: RCADir is 75° ROADir is 50° IcosPhi&V " in the parameter setting tool, checks that: The second principle, referred to as "...
Page 709
1MRK 502 066-UUS B Section 11 Multipurpose protection Note that it is possible to decide by a parameter setting how the directional feature shall behave when the magnitude of the measured voltage phasor falls below the pre-set value. User can select one of the following three options: •...
Page 710
Section 11 1MRK 502 066-UUS B Multipurpose protection OC1 Stage Pickup Level PickupCurr_OC1 VDepFact_OC1 * PickupCurr_OC1 VHighLimit_OC1 Selected Voltage Magnitude en05000323_ansi.vsd ANSI05000323 V1 EN-US Figure 374: Example for OC1 step current pickup level variation as function of measured voltage magnitude in Step mode of operation This feature will simply change the set overcurrent pickup level in accordance with magnitude variations of the measured voltage.
Page 711
1MRK 502 066-UUS B Section 11 Multipurpose protection When set, the pickup signal will start definite time delay or inverse (IDMT) time delay in accordance with the end user setting. If the pickup signal has value one for longer time than the set time delay, the overcurrent step will set its trip signal to one.
Page 712
Section 11 1MRK 502 066-UUS B Multipurpose protection CVGAPC TROC1 TROV1 TRUV1 BLKOC1 ANSI10000028-1-en.vsd ANSI10000028 V1 EN-US Figure 376: Configuration of the inadvertent energizing function The setting of the general current and voltage function (typical values) is done as shown in table 413.
Page 713
1MRK 502 066-UUS B Section 11 Multipurpose protection It the generator is energized at stand still conditions, that is, when the voltage is zero, the overcurrent function will operate after the short set delay if the generator current is larger than the set value.
Page 714
Section 11 1MRK 502 066-UUS B Multipurpose protection The multipurpose protection function: Selects one current from the three-phase input system (see table 409) for internally measured current. Selects one voltage from the three-phase input system (see table 410) for internally measured voltage.
Page 715
1MRK 502 066-UUS B Section 11 Multipurpose protection CURRENT TRUC1 Harmonic restraint Selected current PU_UC2 TRUC2 Harmonic restraint PU_OC1 TROC1 Harmonic BLK2ND restraint Selected restraint current Current restraint DIROC1 Directionality Voltage control / restraint PU_OC2 TROC2 Harmonic restraint Current restraint VDIRLOW Directionality DIROC2...
Page 716
Section 11 1MRK 502 066-UUS B Multipurpose protection Figure 378: CVGAPC function main logic diagram for built-in protection elements Logic in figure can be summarized as follows: The selected currents and voltage are given to built-in protection elements. Each protection element and step makes independent decision about status of its PICKUP and TRIP output signals.
Page 717
1MRK 502 066-UUS B Section 11 Multipurpose protection Bin input: BLKUC1TR Selected current TRUC1 b>a 0-DEF PickupCurr_UC1 Operation_UC1=On Bin input: BLKUC1 en05000750_ansi.vsd ANSI05000750 V1 EN-US Figure 380: Simplified internal logic diagram for built-in first undercurrent step that is, UC1 (step UC2 has the same internal logic) DEF time BLKTROV1...
Page 718
Section 11 1MRK 502 066-UUS B Multipurpose protection DEF time BLKTRUV1 TRUV1 0-DEF selected Selected voltage b>a PU_UV1 PickupVolt_UV1 Inverse Operation_UV1=On Inverse time selected BLKUV1 en05000752_ansi.vsd ANSI05000752 V1 EN-US Figure 382: Simplified internal logic diagram for built-in first undervoltage step UV1 (step UV2 has the same internal logic) 11.1.8 Technical data...
Page 719
1MRK 502 066-UUS B Section 11 Multipurpose protection Function Range or value Accuracy Reset time at 10 to 0 x I Min. = 20 ms Max. = 35 ms Undercurrent: Pickup time at 2 to 0 x I Min. = 15 ms Max.
Section 11 1MRK 502 066-UUS B Multipurpose protection Function Range or value Accuracy Reset ratio, undercurrent < 105% Reset ratio, overvoltage > 95% Reset ratio, undervoltage < 105% Overcurrent: Critical impulse time 10 ms typically at 0 to 2 x I Impulse margin time 15 ms typically Undercurrent:...
Page 721
1MRK 502 066-UUS B Section 11 Multipurpose protection Rotor ground fault protection can be integrated in the IED among all other protection functions typically required for generator protection. How this is achieved by using COMBIFLEX injection unit RXTTE4 is described in Instruction 1MRG001910.
Page 722
Section 11 1MRK 502 066-UUS B Multipurpose protection Generator rotor winding Connection to be done by the panel builder / field contractor Optional external resistor RXTTE 4 REG 670 230 V AC 120 V AC en07000185_ansi.vsd ANSI07000185 V1 EN-US Figure 383: Connection of rotor ground fault protection By using a two stage directional current measurement in the General current and voltage protection (CVGAPC), as shown in figure 384, the ground fault current on the DC side of the excitation is detected.
Page 723
1MRK 502 066-UUS B Section 11 Multipurpose protection Operating Region INJECTED INJECTED en06000447_ansi.vsd ANSI06000447 V1 EN-US Figure 384: Two stage directional current measurement in the general application multipurpose function The sensitivity of the rotor ground fault protection is dependent of the rotor winding capacitance to ground and the set pick-up current level of the General current and voltage protection (CVGAPC).
Page 724
Section 11 1MRK 502 066-UUS B Multipurpose protection REG 670 : 50 Hz : Raxle=0 10 0 ko hm 0 ,1 3 0 mA 4 0 mA 50 mA 70 mA 10 0 mA 150 mA 2 0 0 mA 3 0 0 mA en06000445.vsd IEC06000445 V1 EN-US...
Page 725
1MRK 502 066-UUS B Section 11 Multipurpose protection Function Range or value Trip ground fault resistance Approx. 1–20 kΩ value Influence of harmonics in the Negligible influence of 50 V, DC field voltage 150 Hz or 50 V, 300 Hz Permitted leakage (1–5) μF capacitance...
Page 727
1MRK 502 066-UUS B Section 12 System protection and control Section 12 System protection and control 12.1 Multipurpose filter SMAIHPAC GUID-6B541154-D56B-452F-B143-4C2A1B2D3A1F v1 12.1.1 Identification GUID-8224B870-3DAA-44BF-B790-6600F2AD7C5D v1 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Multipurpose filter SMAIHPAC 12.1.2 Functionality...
Page 728
Section 12 1MRK 502 066-UUS B System protection and control PID-3390-OUTPUTSIGNALS v7 Table 417: SMAIHPAC Output signals Name Type Description AI3P GROUP SIGNAL Analog input 3-phase group GROUP SIGNAL Analog input 1 GROUP SIGNAL Analog input 2 GROUP SIGNAL Analog input 3 GROUP SIGNAL Analog input 4 12.1.5...
Page 729
1MRK 502 066-UUS B Section 12 System protection and control very high precision. For example the magnitude and phase angle of the phasor can be estimated even if it has magnitude of one per mille (i.e. 1‰ ) in comparison to the dominating signal (e.g. the fundamental frequency component).
Page 730
Section 12 1MRK 502 066-UUS B System protection and control How many samples in the memory are used for the phasor calculation depends on the setting FilterLength . parameter Table 419 gives overview of the used number of samples for phasor calculation by the filter.
Page 731
1MRK 502 066-UUS B Section 12 System protection and control Thus the longer length of the filter the better capability it has to reject the disturbing signals close to the required frequency component and any other noise present in the input signal waveform. For example if 46 Hz signal wants to be extracted in 50Hz power system, then from Table 420 FilterLength =1,0 s”...
Page 732
Section 12 1MRK 502 066-UUS B System protection and control IEC13000178-2-en.vsd IEC13000178 V3 EN-US Figure 386: Example of filter calculation The data shown in the Figure comes from the comtrade file captured by the IED. The following traces are presented in this Figure. a) Waveforms of the stator three-phase currents given in primary kA.
Page 733
1MRK 502 066-UUS B Section 13 Secondary system supervision Section 13 Secondary system supervision 13.1 Current circuit supervision (87) IP14555-1 v5 13.1.1 Identification M14870-1 v5 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current circuit supervision CCSSPVC 13.1.2 Functionality...
Page 734
Section 13 1MRK 502 066-UUS B Secondary system supervision 13.1.4 Signals PID-3482-INPUTSIGNALS v6 Table 421: CCSSPVC (87) Input signals Name Type Default Description GROUP Group signal for three phase current input SIGNAL IREF GROUP Residual reference current input SIGNAL BLOCK BOOLEAN Block of function PID-3482-OUTPUTSIGNALS v6...
Page 735
1MRK 502 066-UUS B Section 13 Secondary system supervision The FAIL output will be set to a logical one when the following criteria are fulfilled: • The numerical value of the difference |ΣIphase| – |Iref| is higher than 80% of the numerical value of the sum |ΣIphase| + |Iref|.
Page 736
Section 13 1MRK 502 066-UUS B Secondary system supervision Due to the formulas for the axis compared, |SIphase | - |I ref | and |S I phase | + | I ref | respectively, the slope can not be above 2. 13.1.7 Technical data M12358-1 v9...
Page 737
1MRK 502 066-UUS B Section 13 Secondary system supervision A criterion based on delta current and delta voltage measurements can be added to the fuse failure supervision function in order to detect a three phase fuse failure, which in practice is more associated with voltage transformer switching during station operations.
Page 738
Section 13 1MRK 502 066-UUS B Secondary system supervision Name Type Description PU_DI_A BOOLEAN Pickupof sudden change in current, phase A PU_DI_B BOOLEAN Start signal of sudden change in current, phase B PU_DI_C BOOLEAN Start signal of sudden change in current, phase C PU_DV BOOLEAN Common start signal of sudden change in voltage...
Page 739
1MRK 502 066-UUS B Section 13 Secondary system supervision Table 430: FUFSPVC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 13.2.6 Monitored data PID-3492-MONITOREDDATA v6 Table 431: FUFSPVC Monitored data Name Type...
Page 740
Section 13 1MRK 502 066-UUS B Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN-US...
Page 741
1MRK 502 066-UUS B Section 13 Secondary system supervision The input signal MCBOP is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the miniature circuit breaker protecting the VT secondary circuit. The MCBOP signal sets the output signals BLKV and BLKZ in order to block all the voltage related functions OpModeSel selector.
Page 742
Section 13 1MRK 502 066-UUS B Secondary system supervision FuseFailDetDVDI at the level high, then the signal FuseFailDetDVDI will remain high internal signal as long as the voltage of three phases are lower then the setting VPPU. DeltaV and DeltaI are also generated by In addition to fuse failure detection, two internal signals DelatV and the delta current and delta voltage DVDI detection algorithm.
Page 743
1MRK 502 066-UUS B Section 13 Secondary system supervision DVDI Detection DVDI detection Phase 1 DI detection based on sample analysis DeltaIA DIPU DV detection based on sample analysis DVPU 1.5 cycle 20 ms DeltaVA a>b VPPU DeltaIB DVDI detection Phase 2 DeltaVB Same logic as for phase 1 DVDI detection Phase 3...
Page 744
Section 13 1MRK 502 066-UUS B Secondary system supervision intBlock PU_DI DeltaIA PU_DI_A 20 ms DeltaIB 20 ms PU_DI_B DeltaIC 20 ms PU_DI_C PU_DV DeltaVA PU_DV_A 20 ms DeltaVB 20 ms PU_DV_B DeltaVC 20 ms PU_DV_B ANSI12000165-2-en.vsd ANSI12000165 V2 EN-US Figure 393: Internal signals DeltaV or DeltaI and the corresponding output signals 13.2.7.3 Dead line detection...
Page 745
1MRK 502 066-UUS B Section 13 Secondary system supervision Dead Line Detection a<b AllCurrLow a<b a<b IDLDPU DeadLineDet1Ph a<b DLD1PH a<b DLD3PH a<b VDLDPU intBlock ANSI0000035-1-en.vsd ANSI0000035 V1 EN-US Figure 394: Simplified logic diagram for Dead Line detection part 13.2.7.4 Main logic GUID-D474A49E-D3A8-438C-B7E4-E527FEC2F335 v6 A simplified diagram for the functionality is found in figure 395.
Page 746
Section 13 1MRK 502 066-UUS B Secondary system supervision SealIn is If the fuse failure situation is present for more than 5 seconds and the setting parameter Enabled it will be sealed in as long as at least one phase voltage is below the set value set to VSealInPU .
Page 747
1MRK 502 066-UUS B Section 13 Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK 20 ms BLKTRIP 100 ms FusefailStarted All VL < VSealInPU SealIn = Enabled Any VL < VSealInPU FuseFailDetDUDI OpDVDI = Enabled FuseFailDetZeroSeq FuseFailDetNegSeq...
Section 13 1MRK 502 066-UUS B Secondary system supervision 13.2.8 Technical data M16069-1 v11 Table 432: FUFSPVCtechnical data Function Range or value Accuracy Trip voltage, zero sequence (1-100)% of VBase ±0.5% of V Trip current, zero sequence (1–100)% of IBase ±0.5% of I Trip voltage, negative sequence (1-100)% of VBase...
1MRK 502 066-UUS B Section 13 Secondary system supervision VDSPVC is designed to detect fuse failures or faults in voltage measurement circuit, based on phase wise comparison of voltages of main and pilot fused circuits. VDSPVC blocking output can be configured to block functions that need to be blocked in case of faults in the voltage circuit. 13.3.3 Function block GUID-0C4A6C94-E0D7-4E36-AB49-D74A5E330D36 v2...
Page 750
Section 13 1MRK 502 066-UUS B Secondary system supervision 13.3.5 Settings PID-3485-SETTINGS v7 Table 435: VDSPVC (60) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable operation of the function Vdif Main block 10.0 - 80.0 20.0 Blocking picked up voltage level in % of VBase when main fuse fails...
Page 751
1MRK 502 066-UUS B Section 13 Secondary system supervision 13.3.7 Operation principle GUID-06BC0CC0-8A4F-4D84-A0B1-506E433F72F3 v4 VDSPVC requires six voltage inputs, which are the three phase voltages on main and pilot fuse groups. The initial voltage difference between the two groups is theoretical zero in the healthy condition.
Page 752
Section 13 1MRK 502 066-UUS B Secondary system supervision 13.3.8 Technical data GUID-E2EA8017-BB4B-48B0-BEDA-E71FEE353774 v4 Table 439: technical data Function Range or value Accuracy Operate value, block of main (10.0-80.0)% of VBase ±0.5% of Vn fuse failure Reset ratio <110% Operate time, block of main Min.
Page 753
1MRK 502 066-UUS B Section 14 Control Section 14 Control 14.1 Synchronism check, energizing check, and synchronizing SESRSYN (25) IP14558-1 v4 14.1.1 Identification M14889-1 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc...
Page 755
1MRK 502 066-UUS B Section 14 Control Name Type Default Description BUS1_CL BOOLEAN Close status for CB and disconnector connected to bus1 BUS2_OP BOOLEAN Open status for CB or disconnector connected to bus2 BUS2_CL BOOLEAN Close status for CB and disconnector connected to bus2 LINE1_OP BOOLEAN Open status for CB or disconnector connected to line1...
Page 756
Section 14 1MRK 502 066-UUS B Control Name Type Description SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed VOKSYN BOOLEAN Voltage amplitudes for synchronizing above set limits VDIFFSYN BOOLEAN Voltage difference out of limit for synchronizing FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDIFFOK BOOLEAN Frequency difference in band for synchronizing...
Page 757
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description FreqRateChange 0.000 - 0.500 Hz/s 0.001 0.300 Maximum allowed frequency rate of change tBreaker 0.000 - 60.000 0.001 0.080 Closing time of the breaker tClosePulse 0.050 - 60.000 0.001 0.200 Breaker closing pulse duration...
Page 758
Section 14 1MRK 502 066-UUS B Control Table 443: SESRSYN (25) Non group settings (basic) Name Values (Range) Unit Step Default Description SelPhaseBus1 Phase A Phase A Select phase for busbar1 Phase B Phase C Phases AB Phase BC Phase CA Positive sequence GblBaseSelBus 1 - 12...
Page 759
1MRK 502 066-UUS B Section 14 Control 14.1.6 Monitored data PID-3845-MONITOREDDATA v6 Table 445: SESRSYN (25) Monitored data Name Type Values (Range) Unit Description VDIFFME REAL Calculated difference of voltage in p.u of set voltage base value FRDIFFME REAL Calculated difference of frequency PHDIFFME REAL Calculated difference of phase angle...
Page 760
Section 14 1MRK 502 066-UUS B Control Synchronism check M14834-3 v13 The voltage difference, frequency difference and phase angle difference values are measured in the IED centrally and are available for the synchronism check function for evaluation. By setting the SelPhaseBus1 , SelPhaseBus2 , SelPhaseLine1 and phases used for SESRSYN, with the settings SelPhaseLine2 , a compensation is made automatically for the voltage amplitude difference and...
Page 761
1MRK 502 066-UUS B Section 14 Control Note! Similar logic for Manual Synchronism check. OperationSC = Enabled TSTSC BLKSC BLOCK AUTOSYOK tSCA 0-60 ms VDiffSC 50 ms VHighBusSC VOKSC VHighLineSC VDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA VDIFFME voltageDifferenceValue FRDIFFME frequencyDifferenceValue phaseAngleDifferenceValue 100 ms INADVCLS PhDiff >...
Page 762
Section 14 1MRK 502 066-UUS B Control closing pulses, a maximum closing angle between bus and line is preset internally to a value of 15 tBreaker at the preset maximum degrees.. Table below shows the maximum settable value for closing angle of 15 degrees, at different allowed slip frequencies for synchronizing. Table 446: Dependencies between tBreaker and SlipFrequency with maximum closing angle of 15 degrees tBreaker [s] (max settable value) with the internally preset SlipFrequency [Hz] (BusFrequency - LineFrequency)
Page 763
1MRK 502 066-UUS B Section 14 Control SYN1 OPERATION SYNCH=ON TEST MODE=ON SYNPROGR STARTSYN BLKSYNCH VDiffSynch SYNOK 50 ms VHighBusSynch VHighLineSynch FreqDiffMax TSTSYNOK FreqDiffMin tClose Pulse FreqRateChange fBus&fLine ± 5Hz tMax Synch Phase Diff < 15 deg SYNFAIL PhaseDiff=closing angle FreqDiff Close pulse tBreaker...
Page 764
Section 14 1MRK 502 066-UUS B Control manEnergOpenBays MANENOK TSTENERG BLKENERG BLOCK selectedFuseOK VLiveBusEnerg 0 – 60 s DLLB tManEnerg VDeadLineEnerg BOTH ManEnerg VDeadBusEnerg DBLL VLiveLineEnerg TSTENOK ManEnergDBDL VMaxEnerg fBus and fLine ±5 Hz ANSI14000031-1-en.vsd ANSI14000031 V1 EN-US Figure 401: Manual energizing TSTENERG BLKENERG BLOCK...
Page 765
1MRK 502 066-UUS B Section 14 Control BLKENERG manEnergOpenBays BLOCK ManEnerg 1½ bus CB CBConfig B1QOPEN LN1QOPEN B1QCLD B2QOPEN LN2QOPEN 1½ bus alt. CB B2QCLD Tie CB IEC14000032-1-en.vsd IEC14000032 V1 EN-US Figure 403: Open bays Fuse failure supervision M14837-3 v10 External fuse failure signals or signals from a tripped fuse switch/MCB are connected to binary inputs that are configured to the inputs of SESRSYN (25) function in the IED.
Page 766
Section 14 1MRK 502 066-UUS B Control The voltage selection function, selected voltages, and fuse conditions are used for the Synchronism check and Energizing check inputs. For the disconnector positions it is advisable to use (NO) a and (NC) b type contacts to supply Disconnector Open and Closed positions but, it is also possible to use an inverter for one of the positions.
Page 767
1MRK 502 066-UUS B Section 14 Control BUS1_OP B1SEL BUS1_CL BUS2_OP B2SEL BUS2_CL invalidSelection busVoltage bus1Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF BLOCK en05000779_2_ansi.vsd ANSI05000779 V2 EN-US Figure 404: Logic diagram for the voltage selection function of a single circuit breaker with double busbars Voltage selection for a breaker-and-a-half circuit breaker arrangement M14839-3 v8 Note that with breaker-and-a-half schemes three Synchronism check functions must be used for...
Page 768
Section 14 1MRK 502 066-UUS B Control • The line 1 voltage is selected if the line 1 disconnector is closed. • The bus 1 voltage is selected if the line 1 disconnector is open and the bus 1 circuit breaker is closed.
Page 769
1MRK 502 066-UUS B Section 14 Control LINE1_OP L1SEL LINE1_CL B1SEL BUS1_OP BUS1_CL line1Voltage busVoltage bus1Voltage LINE2_OP L2SEL LINE2_CL B2SEL invalidSelection BUS2_OP BUS2_CL lineVoltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000781_2_ansi.vsd ANSI05000781 V2 EN-US Figure 406: Simplified logic diagram for the voltage selection function for the tie circuit breaker in breaker- and-a-half arrangement.
Page 770
Section 14 1MRK 502 066-UUS B Control 14.1.8 Technical data M12359-1 v12 Table 447: SESRSYN (25) technical data Function Range or value Accuracy (-180 to 180) degrees Phase shift, j line Voltage high limit for synchronism check ±0.5% of V at V ≤...
Page 771
1MRK 502 066-UUS B Section 14 Control 14.2 Interlocking (3) IP15572-1 v2 14.2.1 Functionality M15106-3 v7 The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury.
Page 772
Section 14 1MRK 502 066-UUS B Control Apparatus control Interlocking modules modules in other bays SCILO SCSWI SXSWI Apparatus control modules Interlocking SCILO SCSWI SXCBR module Apparatus control modules SCILO SCSWI SXSWI en04000526_ansi.vsd ANSI04000526 V1 EN-US Figure 407: Interlocking module on bay level Bays communicate via the station bus and can convey information regarding the following: •...
Page 773
1MRK 502 066-UUS B Section 14 Control For all interlocking modules these general rules apply: • The interlocking conditions for opening or closing of disconnectors and grounding switches are always identical. • Grounding switches on the line feeder end, for example, rapid grounding switches, are normally interlocked only with reference to the conditions in the bay where they are located, not with reference to switches on the other side of the line.
Page 774
Section 14 1MRK 502 066-UUS B Control 14.2.3.2 Functionality M15048-3 v6 The Logical node for interlocking SCILO(3) function is used to enable a switching operation if the interlocking conditions permit. SCILO (3) function itself does not provide any interlocking functionality. The interlocking conditions are generated in separate function blocks containing the interlocking logic.
Page 775
1MRK 502 066-UUS B Section 14 Control SCILO POSOPEN POSCLOSE EN_OPEN OPEN_EN EN_CLOSE CLOSE_EN en04000525_ansi.vsd ANSI04000525 V1 EN-US Figure 410: SCILO (3) function logic diagram 14.2.4 Interlocking for busbar grounding switch BB_ES (3) IP14164-1 v4 14.2.4.1 Identification GUID-F3CBAFDC-3723-429F-9183-45229A6F0A12 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2...
Page 777
1MRK 502 066-UUS B Section 14 Control 14.2.5.1 Identification GUID-29EF1F25-E10A-4C82-A6B7-FA246D9C6CD2 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-section breaker A1A2_BS 14.2.5.2 Functionality M15110-3 v7 The interlocking for bus-section breaker (A1A2_BS ,3) function is used for one bus-section circuit breaker between section 1 and 2 according to figure 413.
Page 781
1MRK 502 066-UUS B Section 14 Control Name Type Default Description VP_BBTR BOOLEAN Status are valid for apparatuses involved in the busbar transfer EXDU_12 BOOLEAN No transm error from any bay connected to busbar 1 and 2 EXDU_89G BOOLEAN No transm error from bays containing ground sw. S189G or S289G 152O_EX1 BOOLEAN External open condition for apparatus 152...
Page 782
Section 14 1MRK 502 066-UUS B Control 14.2.6.1 Identification GUID-0A0229EB-5ECD-405C-B706-6A54CBBDB49D v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-section A1A2_DC disconnector 14.2.6.2 Functionality M13544-3 v7 The interlocking for bus-section disconnector (A1A2_DC, 3) function is used for one bus-section disconnector between section 1 and 2 according to figure 415.
Page 784
Section 14 1MRK 502 066-UUS B Control Name Type Default Description S189G_CL BOOLEAN S189G on bus section 1 is in closed position S289G_OP BOOLEAN S289G on bus section 2 is in open position S289G_CL BOOLEAN S289G on bus section 2 is in closed position S1DC_OP BOOLEAN All disconnectors on bus section 1 are in open position...
Page 785
1MRK 502 066-UUS B Section 14 Control 14.2.7.2 Functionality M13555-3 v8 The interlocking for bus-coupler bay (ABC_BC, 3) function is used for a bus-coupler bay connected to a double busbar arrangement according to figure 417. The function can also be used for a single busbar arrangement with transfer busbar or double busbar arrangement without transfer busbar.
Page 790
Section 14 1MRK 502 066-UUS B Control Name Type Default Description 1189G_OP BOOLEAN Grounding switch 1189G on busbar 1 is in open position 1189G_CL BOOLEAN Grounding switch 1189G on busbar 1 is in closed position 2189G_OP BOOLEAN Grounding switch 2189G on busbar 2 is in open position 2189G_CL BOOLEAN Grounding switch 2189G on busbar 2 is in closed position...
Page 791
1MRK 502 066-UUS B Section 14 Control Name Type Description 789REL BOOLEAN Switching of 789 is allowed 789ITL BOOLEAN Switching of 789 is not allowed 2089REL BOOLEAN Switching of 2089 is allowed 2089ITL BOOLEAN Switching of 2089 is not allowed 189GREL BOOLEAN Switching of 189G is allowed...
Page 792
Section 14 1MRK 502 066-UUS B Control 14.2.8.1 Identification GUID-03F1A3BB-4A1E-49E8-88C6-10B3876F64DA v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for breaker-and-a-half BH_CONN diameter Interlocking for breaker-and-a-half BH_LINE_A diameter Interlocking for breaker-and-a-half BH_LINE_B diameter 14.2.8.2 Functionality M13570-3 v6 The interlocking for breaker-and-a-half diameter (BH_CONN(3), BH_LINE_A(3), BH_LINE_B(3)) functions are used for lines connected to a breaker-and-a-half diameter according to figure 419.
Page 800
Section 14 1MRK 502 066-UUS B Control 14.2.8.5 Signals PID-3593-INPUTSIGNALS v5 Table 458: BH_LINE_A (3) Input signals Name Type Default Description 152_OP BOOLEAN 152 is in open position 152_CL BOOLEAN 152 is in closed position 689_OP BOOLEAN 689 is in open position 689_CL BOOLEAN 689 is in closed position...
Page 801
1MRK 502 066-UUS B Section 14 Control Name Type Default Description 989_EX3 BOOLEAN External condition for apparatus 989 989_EX4 BOOLEAN External condition for apparatus 989 989_EX5 BOOLEAN External condition for apparatus 989 989_EX6 BOOLEAN External condition for apparatus 989 989_EX7 BOOLEAN External condition for apparatus 989 PID-3593-OUTPUTSIGNALS v5...
Page 802
Section 14 1MRK 502 066-UUS B Control Name Type Default Description 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL BOOLEAN 289G is in closed position 389G_OP BOOLEAN 389G is in open position 389G_CL...
Page 803
1MRK 502 066-UUS B Section 14 Control PID-3594-OUTPUTSIGNALS v5 Table 461: BH_LINE_B (3) Output signals Name Type Description 152CLREL BOOLEAN Closing of 152 is allowed 152CLITL BOOLEAN Closing of 152 is not allowed 689REL BOOLEAN Switching of 689 is allowed 689ITL BOOLEAN Switching of 689 is not allowed...
Page 804
Section 14 1MRK 502 066-UUS B Control Name Type Default Description 6189_EX1 BOOLEAN External condition for apparatus 6189 6189_EX2 BOOLEAN External condition for apparatus 6189 6289_EX1 BOOLEAN External condition for apparatus 6289 6289_EX2 BOOLEAN External condition for apparatus 6289 PID-3501-OUTPUTSIGNALS v5 Table 463: BH_CONN (3) Output signals Name Type...
Page 805
1MRK 502 066-UUS B Section 14 Control WA1 (A) WA2 (B) 189G 489G DB_BUS_B DB_BUS_A 289G 589G 6189 6289 389G DB_LINE 989G en04000518_ansi.vsd ANSI04000518 V1 EN-US Figure 423: Switchyard layout double circuit breaker Three types of interlocking modules per double circuit breaker bay are defined. DB_BUS_A (3) handles the circuit breaker QA1 that is connected to busbar WA1 and the disconnectors and grounding switches of this section.
Page 812
Section 14 1MRK 502 066-UUS B Control PID-3598-OUTPUTSIGNALS v5 Table 465: DB_BUS_A (3) Output signals Name Type Description 152CLREL BOOLEAN Closing of 152 is allowed 152CLITL BOOLEAN Closing of 152 is not allowed 6189REL BOOLEAN Switching of 6189 is allowed 6189ITL BOOLEAN Switching of 6189 is not allowed...
Page 813
1MRK 502 066-UUS B Section 14 Control PID-3601-OUTPUTSIGNALS v5 Table 467: DB_BUS_B (3) Output signals Name Type Description 252CLREL BOOLEAN Closing of 252 is allowed 252CLITL BOOLEAN Closing of 252 is not allowed 6289REL BOOLEAN Switching of 6289 is allowed 6289ITL BOOLEAN Switching of 6289 is not allowed...
Page 814
Section 14 1MRK 502 066-UUS B Control Name Type Default Description 989G_OP BOOLEAN 989G is in open position 989G_CL BOOLEAN 989G is in closed position VOLT_OFF BOOLEAN There is no voltage on the line and not VT (fuse) failure VOLT_ON BOOLEAN There is voltage on the line or there is a VT (fuse) failure 989_EX1...
Page 823
1MRK 502 066-UUS B Section 14 Control Name Type Default Description 2189G_CL BOOLEAN Grounding switch 2189G on busbar 2 is in closed position 7189G_OP BOOLEAN Grounding switch 7189G on busbar 7 is in open position 7189G_CL BOOLEAN Grounding switch 7189G on busbar 7 is in closed position BB7_D_OP BOOLEAN Disconnectors on busbar bus7 except in the own bay are open...
Page 824
Section 14 1MRK 502 066-UUS B Control Name Type Description 189REL BOOLEAN Switching of 189 is allowed 189ITL BOOLEAN Switching of 189 is not allowed 289REL BOOLEAN Switching of 289 is allowed 289ITL BOOLEAN Switching of 289 is not allowed 789REL BOOLEAN Switching of 789 is allowed...
Page 825
1MRK 502 066-UUS B Section 14 Control line bay (ABC_LINE, 3) function can be used. This function can also be used in single busbar arrangements. WA1 (A) WA2 (B) 189G AB_TRAFO 289G 389G 252 and 489G are not used in this interlocking 489G en04000515_ansi.vsd ANSI04000515 V1 EN-US...
Page 829
1MRK 502 066-UUS B Section 14 Control Name Type Default Description 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL BOOLEAN 289G is in closed position 389_OP BOOLEAN 389 is in open position 389_CL...
Page 830
Section 14 1MRK 502 066-UUS B Control Name Type Description 189GITL BOOLEAN Switching of 189G is not allowed 289GREL BOOLEAN Switching of 289G is allowed 289GITL BOOLEAN Switching of 289G is not allowed 189OPTR BOOLEAN 189 is in open position 189CLTR BOOLEAN 189 is in closed position...
Page 831
1MRK 502 066-UUS B Section 14 Control 14.2.12.4 Logic diagram GUID-F0EF8D38-031B-4A8E-BD7D-60314F5DCD59 v2 POS_EVAL Open/close position of Position including quality POSITION OPENPOS switch device CLOSEPOS IEC08000469-1-en.vsd IEC08000469-1-EN V1 EN-US Only the value, open/close, and status is used in this function. Time information is not used. Input position (Value) Signal quality Output OPENPOS...
Page 832
Section 14 1MRK 502 066-UUS B Control • Select-Execute principle to give high reliability • Selection function to prevent simultaneous operation • Selection and supervision of operator place • Command supervision • Block/deblock of operation • Block/deblock of updating of position indications •...
Page 833
1MRK 502 066-UUS B Section 14 Control The functions Local Remote (LOCREM) and Local Remote Control (LOCREMCTRL), to handle the local/remote switch, and the functions Bay reserve (QCRSV) and Reservation input (RESIN), for the reservation function, also belong to the apparatus control function. The principles of operation, function blocks, input and output signals and setting parameters for all these functions are described below.
Page 834
Section 14 1MRK 502 066-UUS B Control Cause Name Description Supported number 1-of-n-control Control action is blocked because another control action in a domain (for example, substation) is already running (in any XCBR or XSWI of that domain, the DPC.stSeld=”TRUE”) Abortion-by-cancel Control action is aborted due to cancel service Time-limit-over...
Page 835
1MRK 502 066-UUS B Section 14 Control Table 477: Translation of cause values for IEC 61850 edition 2 and edition 1 Internal Cause AddCause in IEC 61850-8-1 Name Number Ed 2 Ed 1 None Not-supported Blocked-by-switching-hierarchy Select-failed Invalid-position Position-reached Parameter-change-in-execution Step-limit Blocked-by-Mode Blocked-by-process...
Page 836
Section 14 1MRK 502 066-UUS B Control Table 478: Cause values not reflected on the output L_CAUSE Cause number Cause description Conditions Select-failed Canceled due to an unsuccessful selection (select service) Blocked-by-Mode Control action is blocked because the LN (CSWI) is in a mode (Mod) which doesn’t allow any switching or does not match the mode of the command.
Page 837
1MRK 502 066-UUS B Section 14 Control 14.3.4.3 Signals PID-4086-INPUTSIGNALS v5 Table 479: QCBAY Input signals Name Type Default Description LR_OFF BOOLEAN External Local/Remote switch is in Off position LR_LOC BOOLEAN External Local/Remote switch is in Local position LR_REM BOOLEAN External Local/Remote switch is in Remote position LR_VALID BOOLEAN...
Page 838
Section 14 1MRK 502 066-UUS B Control Local panel switch M13446-7 v7 The local panel switch is a switch that defines the operator place selection. The switch connected to this function can have three positions (remote/local/off). The positions are here defined so that remote means that operation is allowed from station and/or remote level and local means that operation is allowed from the IED level.
Page 839
1MRK 502 066-UUS B Section 14 Control Blockings M13446-50 v4 The blocking states for position indications and commands are intended to provide the possibility for the user to make common blockings for the functions configured within a complete bay. The blocking facilities provided by the bay control function are the following: •...
Page 840
Section 14 1MRK 502 066-UUS B Control 14.3.5.2 Signals PID-3944-INPUTSIGNALS v4 Table 483: LOCREM Input signals Name Type Default Description CTRLOFF BOOLEAN Disable control LOCCTRL BOOLEAN Local in control REMCTRL BOOLEAN Remote in control LHMICTRL INTEGER LHMI control PID-3944-OUTPUTSIGNALS v4 Table 484: LOCREM Output signals Name Type...
Page 841
1MRK 502 066-UUS B Section 14 Control Name Type Description HMICTR4 INTEGER Bitmask output 4 to local remote LHMI input HMICTR5 INTEGER Bitmask output 5 to local remote LHMI input HMICTR6 INTEGER Bitmask output 6 to local remote LHMI input HMICTR7 INTEGER Bitmask output 7 to local remote LHMI input...
Page 842
Section 14 1MRK 502 066-UUS B Control LOCREM QCBAY CTRLOFF LR_ OFF PSTO LOCCTRL LOCAL LR_ LOC UPD_ BLKD REMCTRL REMOTE LR_ REM CMD_ BLKD LHMICTRL VALID LR_ VALID BL_ UPD BL_ CMD LOCREM QCBAY CTRLOFF LR_ OFF PSTO LOCCTRL LOCAL LR_ LOC UPD_ BLKD...
Page 843
1MRK 502 066-UUS B Section 14 Control 14.3.6.2 Function block M13482-3 v5 SCSWI BLOCK EXE_OP PSTO EXE_CL L_SEL SEL_OP L_OPEN SEL_CL L_CLOSE SELECTED AU_OPEN RES_RQ AU_CLOSE START_SY BL_CMD CANC_SY RES_GRT POSITION RES_EXT OPENP OS SY_INPRO CLOSEPOS SYNC_OK POLEDISC EN_OPEN CMD_BLK EN_CLOSE L_CAUSE XPOSL1*...
Page 844
Section 14 1MRK 502 066-UUS B Control PID-6500-OUTPUTSIGNALS v3 Table 489: SCSWI Output signals Name Type Description EXE_OP BOOLEAN Execute Open command EXE_CL BOOLEAN Execute Close command SEL_OP BOOLEAN Selected for open command SEL_CL BOOLEAN Selected for close command SELECTED BOOLEAN Select conditions are fulfilled RES_RQ...
Page 845
1MRK 502 066-UUS B Section 14 Control 14.3.6.4 Settings PID-6500-SETTINGS v3 Table 490: SCSWI Non group settings (basic) Name Values (Range) Unit Step Default Description CtlModel Dir Norm SBO Enh Specifies control model type SBO Enh PosDependent Always permitted Always Permission to operate depending on the Not perm at permitted...
Page 847
1MRK 502 066-UUS B Section 14 Control occurs in one of the steps in the command sequence, the sequence is terminated. The last error (L_CAUSE) can be read from the function block and used for example at commissioning. There is no relation between the command direction and the actual position. For example, if the switch is in close position it is possible to execute a close command.
Page 848
Section 14 1MRK 502 066-UUS B Control • Block/deblock of command. It is used to block command for operation of position. • Blocking of function, BLOCK. If the BLOCK signal is set, it means that the function is active, but no outputs are generated, no reporting, control commands are rejected and functional and configuration data is visible.
Page 849
1MRK 502 066-UUS B Section 14 Control SCSWI SXCBR EXE_CL CLOSE SYNC_OK START_SY SY_INPRO SESRSYN CLOSECMD Synchro Synchronizing check function ANSI09000209-1-en.vsd ANSI09000209 V1 EN-US Figure 439: Example of interaction between SCSWI, SESRSYN (25) (synchronism check and synchronizing function) and SXCBR function Time diagrams M13484-51 v6 The Switch controller (SCSWI) function has timers for evaluating different time supervision...
Page 850
Section 14 1MRK 502 066-UUS B Control select reservation request RES_RQ reservation granted RES_GRT t1>tResResponse, then 1- tResResponse of-n-control in 'cause' is timer IEC05000093-2-en.vsd IEC05000093 V2 EN-US Figure 441: tResResponse tExecutionFB supervises the time between the execute command and the command The timer termination, see Figure 442.
Page 851
1MRK 502 066-UUS B Section 14 Control execute command SYNC_OK tSynchrocheck START_SY SY_INPRO tSynchronizing t2>tSynchronizing, then blocked-by-synchronism check in 'cause' is set en05000095_ansi.vsd ANSI05000095 V1 EN-US Figure 443: tSynchroCheck and tSynchronizing 14.3.7 Circuit breaker SXCBR IP15614-1 v3 14.3.7.1 Functionality M13489-3 v6 The purpose of Circuit breaker (SXCBR) is to provide the actual status of positions and to perform the control operations, that is, pass all the commands to primary apparatuses in the form of circuit breakers via binary output boards and to supervise the switching operation and position.
Page 852
Section 14 1MRK 502 066-UUS B Control 14.3.7.3 Signals PID-6799-INPUTSIGNALS v3 Table 491: SXCBR Input signals Name Type Default Description BLOCK BOOLEAN Block of function LR_SWI BOOLEAN Local/Remote switch indication from switchyard OPEN BOOLEAN Pulsed signal used to immediately open the switch CLOSE BOOLEAN Pulsed signal used to immediately close the switch...
Page 853
1MRK 502 066-UUS B Section 14 Control Name Type Description L_CAUSE INTEGER Latest value of the error indication during command EEHEALTH INTEGER External equipment health. 1=No warning or alarm, 2=Warning, 3=Alarm CBOPCAP INTEGER Breaker operating capability 1 = None, 2 = O, 3 = CO, 4 = OCO, 5 = COCO, 6+ = More 14.3.7.4 Settings...
Page 854
Section 14 1MRK 502 066-UUS B Control Local= Operation at switch yard level From I/O switchLR Remote= Operation at IED or higher level en05000096.vsd IEC05000096 V1 EN-US Figure 445: Local/Remote switch Blocking principles M13487-12 v5 SXCBR includes several blocking principles. The basic principle for all blocking signals is that they will affect commands from all other clients for example, switch controller, protection functions and autoreclosure.
Page 855
1MRK 502 066-UUS B Section 14 Control Time diagrams M13487-28 v4 tStartMove and tIntermediate . There are two timers for supervising of the execute phase, tStartMove supervises that the primary device starts moving after the execute output pulse is tIntermediate defines the maximum allowed time for intermediate position. Figure sent.
Page 856
Section 14 1MRK 502 066-UUS B Control The execute output pulses are reset when: • the new expected final position is reached and the configuration parameter AdaptivePulse is set to true tOpenPulse or tClosePulse has elapsed • the timer tStartMove has elapsed. •...
Page 857
1MRK 502 066-UUS B Section 14 Control 14.3.8.1 Functionality M16492-3 v6 The purpose of Circuit switch (SXSWI) function is to provide the actual status of positions and to perform the control operations, that is, pass all the commands to primary apparatuses in the form of disconnectors or grounding switches via binary output boards and to supervise the switching operation and position.
Page 858
Section 14 1MRK 502 066-UUS B Control PID-6800-OUTPUTSIGNALS v4 Table 495: SXSWI Output signals Name Type Description XPOS GROUP SIGNAL Group connection to CSWI for XCBR and XSWI EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction SUBSTED BOOLEAN Indication that the position is substituted...
Page 859
1MRK 502 066-UUS B Section 14 Control time supervision conditions. Only if all conditions indicate a switch operation to be allowed, SXSWI performs the execution command. In case of erroneous conditions, the function indicates an appropriate "cause" value, see Table 476. SXSWI has an operation counter for closing and opening commands.
Page 860
Section 14 1MRK 502 066-UUS B Control It is always possible to make a substitution, independently of the position indication and the status information of the I/O board. When substitution is enabled, the other signals related to the position follow the substituted position. The substituted values are stored in a non-volatile memory.
Page 861
1MRK 502 066-UUS B Section 14 Control OPENPOS CLOSEPOS AdaptivePulse=FALSE EXE_CL tClosePulse AdaptivePulse=TRUE EXE_CL tClosePulse en05000098.vsd IEC05000098 V1 EN-US Figure 452: Execute output pulse tOpenPulse or If the pulse is set to be adaptive, it is not possible for the pulse to exceed tClosePulse .
Page 862
Section 14 1MRK 502 066-UUS B Control OPENPOS CLOSEPOS AdaptivePulse=FALSE EXE_OP tOpenPulse AdaptivePulse=TRUE EXE_OP tOpenPulse tStartMove timer en05000099.vsd IEC05000099 V1 EN-US Figure 453: Open command with open position indication 14.3.9 Proxy for signals from switching device via GOOSE XLNPROXY 14.3.9.1 Functionality GUID-11F9CA1C-8E20-489B-822B-34DACC59553A v1 The proxy for signals from switching device via GOOSE (XLNPROXY) gives an internal...
Page 863
1MRK 502 066-UUS B Section 14 Control 14.3.9.3 Signals PID-6712-INPUTSIGNALS v3 Table 497: XLNPROXY Input signals Name Type Default Description INTEGER Behaviour BEH_VLD BOOLEAN Valid data on BEH input BOOLEAN Local control behaviour LOC_VLD BOOLEAN Valid data on LOC input BLKOPN BOOLEAN Block opening...
Page 864
Section 14 1MRK 502 066-UUS B Control Name Type Description CLOSEPOS BOOLEAN Apparatus closed position CNT_VAL INTEGER Operation counter value L_CAUSE INTEGER Latest value of the error indication during command EEHEALTH INTEGER External equipment health. 1=No warning or alarm, 2=Warning, 3=Alarm OPCAP INTEGER...
Page 865
1MRK 502 066-UUS B Section 14 Control 14.3.9.7 Command response evaluation GUID-A2CDC1AE-A6F5-478B-B6E5-3442C54212D8 v1 The command evaluation is triggered through the group input XIN that is connected to the SCSWI function controlling the switch. If an operation is initiated by the SCSWI, the XLNPROXY function checks if the switch is blocked for the operation direction and that the position moves to the desired position within the two time limits tStartMove and tIntermediate .
Page 866
Section 14 1MRK 502 066-UUS B Control If the quality of the position or the communication becomes bad, the command evaluation replaces the uncertain position value with intermediate position. Thus, as long as the quality is bad, all commands will result in the cause Persistant-intermediate-state, -32. If the switch in the merging unit has the behaviour set to Test or Test blocked, when the IED has the behaviour On or Blocked, all data from the switch is regarded as invalid.
Page 867
1MRK 502 066-UUS B Section 14 Control 14.3.10.3 Signals PID-3561-INPUTSIGNALS v4 Table 501: QCRSV Input signals Name Type Default Description EXCH_IN INTEGER Used for exchange signals between different BayRes blocks RES_RQ1 BOOLEAN Signal for apparatus 1 that requests to do a reservation RES_RQ2 BOOLEAN Signal for apparatus 2 that requests to do a reservation...
Page 868
Section 14 1MRK 502 066-UUS B Control 14.3.10.4 Settings PID-3561-SETTINGS v4 Table 503: QCRSV Non group settings (basic) Name Values (Range) Unit Step Default Description tCancelRes 0.000 - 60.000 0.001 10.000 Supervision time for canceling the reservation ParamRequest1 Other bays res. Only own bay res.
Page 869
1MRK 502 066-UUS B Section 14 Control Reservation of other bays M13505-11 v2 When the function QCRSV receives a request from an apparatus in the own bay that requires other bays to be reserved as well, it checks if it already is reserved. If not, it will send a request to the other bays that are predefined (to be reserved) and wait for their response (acknowledge).
Page 870
Section 14 1MRK 502 066-UUS B Control QCRSV EXCH_IN RES_ GRT1 RES_RQ1 RES_ GRT2 RES_RQ2 RES_ GRT3 RES_RQ3 RES_ GRT4 RES_RQ4 RES_ GRT5 RES_RQ5 RES_ GRT6 RES_RQ6 RES_ GRT7 RES_RQ7 RES_ GRT8 RES_RQ8 RES_ BAYS BLK_ RES ACK_TO_B OVERRIDE RESERVED RES_ DATA EXCH_ OUT QCRSV...
Page 871
1MRK 502 066-UUS B Section 14 Control RESIN2 EXCH_IN ACK_F_B BAY_ACK ANY_ACK BAY_VAL VALID_TX BAY_RES RE_RQ_B V_RE_RQ EXCH_OUT IEC09000807_1_en.vsd IEC09000807 V1 EN-US Figure 458: RESIN2 function block 14.3.11.3 Signals PID-3629-INPUTSIGNALS v4 Table 504: RESIN1 Input signals Name Type Default Description BAY_ACK BOOLEAN Another bay has acknowledged the reservation request from this...
Page 872
Section 14 1MRK 502 066-UUS B Control PID-3630-OUTPUTSIGNALS v4 Table 507: RESIN2 Output signals Name Type Description ACK_F_B BOOLEAN All other bays have acknowledged the reservation request from this bay ANY_ACK BOOLEAN Any other bay has acknowledged the reservation request from this bay VALID_TX BOOLEAN...
Page 873
1MRK 502 066-UUS B Section 14 Control EXCH_IN ACK_F_B FutureUse ANY_ACK BAY_ACK VALID_TX BAY_VAL RE_RQ_B BAY_RES V _RE_RQ EXCH_OUT INT……..Integer BIN……..Binary en05000089_ansi.vsd ANSI05000089 V1 EN-US Figure 459: Logic diagram for RESIN Figure describes the principle of the data exchange between all RESIN modules in the current bay.
Page 874
Section 14 1MRK 502 066-UUS B Control RESIN BAY_ACK ACK_F_B Bay 1 BAY_VAL ANY_ACK BAY_RES VALID_TX RE_RQ_B V_RE_RQ EXCH_OUT RESIN EXCH_IN ACK_F_B BAY_ACK ANY_ACK Bay 2 BAY_VAL VALID_TX BAY_RES RE_RQ_B V_RE_RQ EXCH_OUT RESIN EXCH_IN ACK_F_B BAY_ACK ANY_ACK Bay n BAY_VAL VALID_TX QCRSV BAY_RES...
Page 875
1MRK 502 066-UUS B Section 14 Control 14.4.2 Functionality M5864-3 v11 Tap changer control and supervision, 6 binary inputs TCMYLTC (84) as well as Tap changer control and supervision, 32 binary inputs TCLYLTC (84) are is used for control of power transformers with a on-load tap changer.
Page 876
Section 14 1MRK 502 066-UUS B Control Automatic voltage control for tap changer, single control TR1ATCC (90) SEMOD158887-4 v5 Automatic voltage control for tap changer, single control TR1ATCC (90) measures the magnitude of the busbar voltage V . If no other additional features are enabled (line voltage drop compensation), this voltage is further used for voltage regulation.
Page 877
1MRK 502 066-UUS B Section 14 Control Automatic control for tap changer, parallel control TR8ATCC (90) SEMOD158887-54 v3 Parallel control of power transformers means control of two or more power transformers connected to the same busbar on the LV side and in most cases also on the HV side. Special measures must be taken in order to avoid a runaway situation where the tap changers on the parallel transformers gradually diverge and end up in opposite end positions.
Page 878
Section 14 1MRK 502 066-UUS B Control If the functions are located in different IEDs they must communicate via GOOSE interbay communication on the IEC 61850 communication protocol. Complete exchange of TR8ATCC (90) data, analog as well as binary, via GOOSE is made cyclically every 300 ms. The main objectives of the circulating current method for parallel voltage control are: Regulate the busbar or load voltage to the preset target value.
Page 879
1MRK 502 066-UUS B Section 14 Control Because the transformer impedance is dominantly inductive, it is possible to use just the transformer reactances in the above formula. At the same time this means that T1 circulating current lags the busbar voltage by almost 90°, while T2 circulating current leads the busbar voltage by almost 90°.
Page 880
Section 14 1MRK 502 066-UUS B Control will, however, be used to calculate the total through load current and will be used for the line voltage drop compensation. The total load current is defined as the sum of all individual transformer currents: å...
Page 881
1MRK 502 066-UUS B Section 14 Control regarded similarly to the single transformer measured busbar voltage, and further control actions taken. For the transformer producing/receiving the circulating current, the calculated no-load voltage will be greater/smaller than the measured voltage V .
Page 882
Section 14 1MRK 502 066-UUS B Control DB1, transformers with positive voltage deviation, V , are disregarded. Thus in the example above, the calculated no-load voltage for T3, although above DB1, would not be considered in this case. Thus in the example above, the calculated no-load voltage for T3, although above DB1, would not be considered for tapping in this case.
Page 883
1MRK 502 066-UUS B Section 14 Control AUTO PARALLEL START OPERSIMTAP a<b < V1 INNER DB a>b > V2 INNER DB V CIRCCOMP VRAISE a<b < V1 DB V CIRCCOMP a>b > VLOWER V2 DB a>b > V MAX en06000511_ansi.vsd ANSI06000511 V1 EN-US Figure 466: Simplified logic for parallel control in the circulating current mode Technical manual...
Page 885
1MRK 502 066-UUS B Section 14 Control From the Master via horizontal comm. relativePosition a<b < raiseVoltageOut lowerVoltageOut a>b > VRAISE EnableAotoMSF VLOWER YLTCOUT ® ATCCIN tapPosition tapInHighVoltPos tapInLowVoltPos en06000510_ansi.vsd ANSI06000510 V1 EN-US Figure 468: Simplified logic for parallel control in Master-Follower mode 14.4.4 Tap changer control and supervision, 6 binary inputs TCMYLTC (84) and TCLYLTC (84)
Page 886
Section 14 1MRK 502 066-UUS B Control Via coded binary (Binary), binary coded decimal (BCD) signals or Gray coded binary signals SEMOD159170-24 v3 The Tap changer control and supervision, (TCMYLTC or TCLYLTC ,84) decodes binary data from up to six binary inputs to an integer value. The input pattern may be decoded either as BIN, BCD or CodeType .
Page 887
1MRK 502 066-UUS B Section 14 Control The Gray code conversion above is not complete and therefore the conversion from decimal numbers to Gray code is given below. Table 511: Gray code conversion IEC06000523 V1 EN-US Via a mA input signal SEMOD159170-35 v3 Any of the six inputs on the mA card (MIM) can be used for the purpose of tap changer position reading connected to the Tap changer control and supervision, 6 binary inputs TCMYLTC (84) or 32...
Page 888
Section 14 1MRK 502 066-UUS B Control The measurement of the tap changer position via MIM module is based on the principle that the specified mA input signal range (usually 4-20 mA) is divided into N intervals corresponding to the number of positions available on the tap changer.
Page 889
1MRK 502 066-UUS B Section 14 Control (Rmk. In case of parallel control, this signal shall TR8ATCC_90 TCYLTC_84 also be YLTCIN VRAISE I3P1 ATCCOUT connected to I3P2 TCINPROG VLOWER HORIZx input of the parallel V3P2 AUTO INERR HIPOSAL transformer BLOCK IBLK RESETERR LOPOSAL...
Page 890
Section 14 1MRK 502 066-UUS B Control Table 512: Binary signals: ATCCOUT / YLTCIN Signal Description raiseVolt Order to TCMYLTC or TCLYLTC (84) to make a raise command lowerVolt Order to TCMYLTC or TCLYLTC (84) to make a lower command automaticCtrl The regulation is in automatic control extRaiseBlock...
Page 891
1MRK 502 066-UUS B Section 14 Control Signal Description TermIsMaster Activated for the transformer that is master in the master-follower parallel control mode termReadyForMSF Activated when the transformer is ready for master-follower parallel control mode raiseVoltageOut Order from the master to the followers to tap up lowerVoltageOut Order from the master to the followers to tap down Table 516: Analog signals: ATCCOUT / HORIZx...
Page 892
Section 14 1MRK 502 066-UUS B Control Table 518: Integer signals: YLTCOUT / ATCCIN Signal Description tapPosition Actual tap position as reported from the load tap changer numberOfOperatio Accumulated number of tap changer operations tapPositionMaxVolt Tap position for highest voltage tapPositionMinVolt Tap position for lowest voltage 14.4.6...
Page 895
1MRK 502 066-UUS B Section 14 Control Name Type Default Description RAISEV BOOLEAN Binary "UP" command LOWERV BOOLEAN Binary "DOWN" command EAUTOBLK BOOLEAN Block the voltage control in automatic control mode DEBLKAUT BOOLEAN Binary "Deblock Auto" command LVA1 BOOLEAN Activation of load voltage adjust. factor 1 LVA2 BOOLEAN Activation of load voltage adjust.
Page 896
Section 14 1MRK 502 066-UUS B Control PID-6559-INPUTSIGNALS v3 Table 521: TR8ATCC (90) Input signals Name Type Default Description I3P1 GROUP Input group for current on HV side SIGNAL I3P2 GROUP Input group for current on LV side SIGNAL V3P2 GROUP Input group for voltage on LV side SIGNAL...
Page 897
1MRK 502 066-UUS B Section 14 Control Name Type Default Description HORIZ2 GROUP Group connection for horizontal communication from T2 SIGNAL HORIZ3 GROUP Group connection for horizontal communication from T3 SIGNAL HORIZ4 GROUP Group connection for horizontal communication from T4 SIGNAL HORIZ5 GROUP...
Page 898
Section 14 1MRK 502 066-UUS B Control Name Type Description MASTER BOOLEAN The transformer is master FOLLOWER BOOLEAN This transformer is a follower MFERR BOOLEAN The number of masters is different from one OUTOFPOS BOOLEAN To high difference in tap positions VGTUPPDB BOOLEAN Voltage greater than deadband-high, ULOWER command to come...
Page 899
1MRK 502 066-UUS B Section 14 Control PID-6506-OUTPUTSIGNALS v6 Table 524: TCMYLTC (84) Output signals Name Type Description URAISE BOOLEAN Raise voltage command to tap changer ULOWER BOOLEAN Lower voltage command to tap changer HIPOSAL BOOLEAN Alarm for tap in highest volt position LOPOSAL BOOLEAN Alarm for tap in lowest volt position...
Page 900
Section 14 1MRK 502 066-UUS B Control Name Type Default Description BOOLEAN Bit 10 from tap changer for the tap position BOOLEAN Bit 11 from tap changer for the tap position BOOLEAN Bit 12 from tap changer for the tap position BOOLEAN Bit 13 from tap changer for the tap position BOOLEAN...
1MRK 502 066-UUS B Section 14 Control Name Type Description INVALPOS BOOLEAN Last position change was an invalid change CNT_VAL INTEGER Number of operations on tap changer TCPOS INTEGER Integer value corresponding to actual tap position YLTCOUT GROUP SIGNAL Group connection to ATCCIN PID-923-INPUTSIGNALS v6 Table 527: VCTRRCV Input signals Name...
Page 902
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description VDeadbandInner 0.1 - 9.0 Inner voltage deadband, % of rated voltage Vmax 80 - 180 Upper lim of busbar voltage, % of rated voltage Vmin 70 - 120 Lower lim of busbar voltage, % of rated voltage Vblock...
Page 903
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description P< -9999.99 - 0.01 -1000 Alarm level of active power in reverse 9999.99 direction Q> -9999.99 - MVAr 0.01 1000 Alarm level of reactive power in forward 9999.99 direction Q<...
Page 904
Section 14 1MRK 502 066-UUS B Control PID-6559-SETTINGS v3 Table 532: TR8ATCC (90) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled MeasMode PosSeq Selection of measured voltage and current PosSeq -9999.99 - MVAr 0.01 Size of cap/reactor bank 1 in MVAr, >0 for...
Page 905
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description OperCapaLDC Disabled Disabled LDC compensation for capacitive load Enabled Rline 0.00 - 150.00 0.01 Line resistance, primary values, in ohm Xline -150.00 - 150.00 0.01 Line reactance, primary values, in ohm LVAConst1 -20.0 - 20.0 Constant 1 for LVA, % of regulated voltage...
Page 906
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description OperUsetPar Disabled Disabled Use common voltage set point for parallel Enabled operation OperHoming Disabled Disabled Activate homing function Enabled VTmismatch 0.5 - 10.0 10.0 Alarm level for VT supervision, % of rated voltage tVTmismatch 1 - 600...
Page 907
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description OperationAdapt Disabled Disabled Enable adapt mode Enabled MFMode Follow Cmd Follow Cmd Select follow tap or follow command Follow Tap CircCurrBk Alarm Alarm Alarm, auto block or auto&man block for Auto Block high circ current Auto&Man Block...
Page 908
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description UseParity Enable parity check tStable 1 - 60 Time after position change before the value is accepted CLFactor 1.0 - 3.0 Adjustable factor for contact life function InitCLCounter 0 - 9999999 250000...
Page 909
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description CLFactor 1.0 - 3.0 Adjustable factor for contact life function InitCLCounter 0 - 9999999 250000 CL counter start value EnabTapCmd Disabled Enabled Enable commands to tap changer Enabled GlobalBaseSel 1 - 12...
Page 910
Section 14 1MRK 502 066-UUS B Control PID-6506-MONITOREDDATA v3 Table 541: TCMYLTC (84) Monitored data Name Type Values (Range) Unit Description TCPOS INTEGER Integer value corresponding to actual tap position PID-3669-MONITOREDDATA v2 Table 542: TCMYLTC (84) Monitored data Name Type Values (Range) Unit Description...
Page 911
1MRK 502 066-UUS B Section 14 Control TCMYLTC (84) and TCLYLTC (84) also serve the purpose of giving information about tap position to the transformer differential protection T2WPDIF (87T) and T3WPDIF (87T). 14.4.11 Technical data SEMOD175215-2 v12 Table 544: TCMYLTC (84) and TLCYLTC (84) technical data Function Range or value Accuracy...
Section 14 1MRK 502 066-UUS B Control Function Range or value Accuracy Time delay for alarms from power supervision (1–6000) s ±0.2% or ±600 ms whichever is greater Tap position for lowest and highest voltage (1–63) mA for lowest and highest voltage tap (0.000–25.000) mA position Type of code conversion...
Page 914
Section 14 1MRK 502 066-UUS B Control Name Type Description BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN Selector switch position 7 BOOLEAN Selector switch position 8 BOOLEAN Selector switch position 9 BOOLEAN Selector switch position 10 BOOLEAN Selector switch position 11 BOOLEAN...
Page 915
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description tPulse 0.000 - 60.000 0.001 0.200 Operate pulse duration, in [s] tDelay 0.000 - 0.010 0.000 Time delay on the output, in [s] 60000.000 StopAtExtremes Disabled Disabled Stop when min or max position is reached Enabled...
Section 14 1MRK 502 066-UUS B Control In both cases, the switch full name will be shown, but the user has to redefine it when building the Graphical Display Editor, under the "Caption". If used for the control, the following sequence of commands will ensure: Control Control...
Page 917
1MRK 502 066-UUS B Section 14 Control 14.6.2 Functionality SEMOD158756-5 v7 The Selector mini switch VSGAPC function block is a multipurpose function used for a variety of applications, as a general purpose switch. VSGAPC can be controlled from the menu or from a symbol on the single line diagram (SLD) on the local HMI.
Page 918
Section 14 1MRK 502 066-UUS B Control 14.6.5 Settings PID-3829-SETTINGS v2 Table 551: VSGAPC Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled CtlModel Dir Norm Dir Norm Specifies the type for control model SBO Enh according to IEC 61850 Mode...
Page 919
1MRK 502 066-UUS B Section 14 Control 14.7 Generic communication function for Double Point indication DPGAPC SEMOD55384-1 v4 14.7.1 Identification GUID-E16EA78F-6DF9-4B37-A92D-5C09827E2297 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generic communication function for DPGAPC Double Point indication 14.7.2 Functionality SEMOD55850-5 v7...
Page 920
Section 14 1MRK 502 066-UUS B Control 14.7.5 Settings ABBD8E283863 v3 The function does not have any parameters available in the local HMI or PCM600. 14.7.6 Operation principle SEMOD55861-5 v7 When receiving the input signals, DPGAPC sends the signals over IEC 61850-8-1 to the systems, equipment or functions that requests and thus subscribes on these signals.
Page 921
1MRK 502 066-UUS B Section 14 Control 14.8.2 Functionality SEMOD176462-4 v8 The Single point generic control 8 signals SPC8GAPC function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
Page 922
Section 14 1MRK 502 066-UUS B Control 14.8.5 Settings PID-3575-SETTINGS v5 Table 557: SPC8GAPC Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PulseMode1 Pulsed Pulsed Setting for pulsed/latched mode for Latched output 1 tPulse1 0.01 - 6000.00...
Page 923
1MRK 502 066-UUS B Section 14 Control 14.9 AutomationBits, command function for DNP3.0 AUTOBITS SEMOD158589-1 v3 14.9.1 Identification GUID-C3BB63F5-F0E7-4B00-AF0F-917ECF87B016 v4 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number AutomationBits, command function AUTOBITS for DNP3 14.9.2 Functionality SEMOD158591-5 v7 AutomationBits function for DNP3 (AUTOBITS) is used within PCM600 to get into the configuration of the commands coming through the DNP3 protocol.
Page 924
Section 14 1MRK 502 066-UUS B Control 14.9.4 Signals PID-3776-INPUTSIGNALS v4 Table 558: AUTOBITS Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection PID-3776-OUTPUTSIGNALS v4 Table 559: AUTOBITS Output signals Name Type Description CMDBIT1 BOOLEAN Command out bit 1...
Page 925
1MRK 502 066-UUS B Section 14 Control Name Type Description CMDBIT30 BOOLEAN Command out bit 30 CMDBIT31 BOOLEAN Command out bit 31 CMDBIT32 BOOLEAN Command out bit 32 14.9.5 Settings PID-3776-SETTINGS v4 Table 560: AUTOBITS Non group settings (basic) Name Values (Range) Unit Step...
Page 926
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description StopBits 1 - 2 Stop bits Parity Even Parity Even tRTSWarmUp 0.000 - 60.000 0.001 0.000 RTS warm-up in s tRTSWarmDown 0.000 - 60.000 0.001 0.000 RTS warm-down in s tBackOffDelay 0.000 - 60.000...
Page 927
1MRK 502 066-UUS B Section 14 Control Table 567: CH2TCP Non group settings (advanced) Name Values (Range) Unit Step Default Description ApLayMaxRxSize 20 - 2048 2048 Application layer maximum Rx fragment size ApLayMaxTxSize 20 - 2048 2048 Application layer maximum Tx fragment size PID-4132-SETTINGS v5 Table 568: CH3TCP Non group settings (basic)
Page 928
Section 14 1MRK 502 066-UUS B Control PID-2450-SETTINGS v8 Table 572: MSTSER Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled ChToAssociate RS485 RS485 Channel to associate to Optical SlaveAddress 0 - 65519 Slave address MasterAddres 0 - 65519...
Page 929
1MRK 502 066-UUS B Section 14 Control Table 573: MSTSER Non group settings (advanced) Name Values (Range) Unit Step Default Description ValMasterAddr Validate source (master) address AddrQueryEnbl Address query enable tApplConfTout 0.00 - 300.00 0.01 10.00 Application layer confim timeout ApplMultFrgRes Enable application for multiple fragment response...
Page 930
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description Averag3TimeReq Use average of 3 time requests PairedPoint Enable paired point tSelectTimeout 1.0 - 60.0 30.0 Select timeout PID-4134-SETTINGS v6 Table 574: MST1TCP Non group settings (basic) Name Values (Range) Unit...
Page 934
Section 14 1MRK 502 066-UUS B Control Name Values (Range) Unit Step Default Description UREvClassMask Disabled Disabled Unsolicited response, event class mask Class 1 Class 2 Class 1 and 2 Class 3 Class 1 and 3 Class 2 and 3 Class 1, 2 and 3 UROfflineRetry 0 - 10...
Page 935
1MRK 502 066-UUS B Section 14 Control PID-4136-SETTINGS v6 Table 578: MST3TCP Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled SlaveAddress 0 - 65519 Slave address MasterAddres 0 - 65519 Master address ValMasterAddr Validate source (master) address MasterIP-Addr...
Page 939
1MRK 502 066-UUS B Section 14 Control Name Values (Range) Unit Step Default Description UREvClassMask Disabled Disabled Unsolicited response, event class mask Class 1 Class 2 Class 1 and 2 Class 3 Class 1 and 3 Class 2 and 3 Class 1, 2 and 3 UROfflineRetry 0 - 10...
Page 940
Section 14 1MRK 502 066-UUS B Control send a control-code of latch-On, latch-Off, pulse-On, pulse-Off, Trip or Close. The remaining parameters will be regarded were appropriate. ex: pulse-On, on-time=100, off-time=300, count=5 would give 5 positive 100 ms pulses, 300 ms apart. There is a BLOCK input signal, which will disable the operation of the function, in the same way the Operation : Enabled/Disabled does.
Page 941
1MRK 502 066-UUS B Section 14 Control 14.10.4 Signals PID-6189-INPUTSIGNALS v5 Table 582: SINGLECMD Input signals Name Type Default Description BLOCK BOOLEAN Block single command function PID-6189-OUTPUTSIGNALS v5 Table 583: SINGLECMD Output signals Name Type Description OUT1 BOOLEAN Single command output 1 OUT2 BOOLEAN Single command output 2...
Page 942
Section 14 1MRK 502 066-UUS B Control The output signals can be of the types Disabled, Steady, or Pulse. This configuration setting is done via the local HMI or PCM600 and is common for the whole function block. The length of the output pulses are 100 ms.
Page 944
Section 15 1MRK 502 066-UUS B Logic 15.1.4 Signals PID-3556-INPUTSIGNALS v3 Table 585: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLKLKOUT BOOLEAN Blocks circuit breaker lockout output (CLLKOUT) TRINP_3P BOOLEAN Trip all phases TRINP_A BOOLEAN Trip phase A TRINP_B...
Page 945
1MRK 502 066-UUS B Section 15 Logic 15.1.5 Settings PID-3556-SETTINGS v2 Table 587: SMPPTRC (94) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled Program 3 phase 1p/3p Three pole; single or three pole; single, two 1p/3p or three pole trip 1p/2p/3p...
Page 946
Section 15 1MRK 502 066-UUS B Logic SMPPTRC (94) function for single-pole and two-pole tripping has additional phase segregated inputs for this, as well as inputs for faulted phase selection. The latter inputs enable single- pole and two-pole tripping for those functions which do not have their own phase selection capability, and therefore which have just a single trip output and not phase segregated trip outputs for routing through the phase segregated trip inputs of the expanded SMPPTRC (94) function.
Page 950
Section 15 1MRK 502 066-UUS B Logic ANSI05000521-3.vsd ANSI05000521 V3 EN-US Figure 487: Final tripping circuits 15.1.7 Technical data M12380-1 v9 Table 589: SMPPTRC (94) technical data Function Range or value Accuracy Trip action 3-ph, 1/3-ph, 1/2/3-ph Minimum trip pulse length (0.000-60.000) s ±0.2% or ±15 ms whichever is greater 3-pole trip delay...
Page 951
1MRK 502 066-UUS B Section 15 Logic 15.2.1 Identification SEMOD167882-2 v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Trip matrix logic TMAGAPC 15.2.2 Functionality M15321-3 v11 The trip matrix logic TMAGAPC function is used to route trip signals and other logical output signals to different output contacts on the IED.
Page 952
Section 15 1MRK 502 066-UUS B Logic 15.2.4 Signals PID-4125-INPUTSIGNALS v7 Table 591: TMAGAPC Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of output 1 BLK2 BOOLEAN Block of output 2 BLK3 BOOLEAN Block of output 3 INPUT1 BOOLEAN Binary input 1...
Page 953
1MRK 502 066-UUS B Section 15 Logic Name Type Default Description INPUT30 BOOLEAN Binary input 30 INPUT31 BOOLEAN Binary input 31 INPUT32 BOOLEAN Binary input 32 PID-4125-OUTPUTSIGNALS v7 Table 592: TMAGAPC Output signals Name Type Description OUTPUT1 BOOLEAN OR function betweeen inputs 1 to 16 OUTPUT2 BOOLEAN OR function between inputs 17 to 32...
Page 954
Section 15 1MRK 502 066-UUS B Logic ModeOutput1 , ModeOutput2 , ModeOutput3 , PulseTime , OnDelay and By use of the settings OffDelay the behavior of each output can be customized. The OnDelay is always active and will ModeOutput for respective output delay the input to output transition by the set time.
Page 955
1MRK 502 066-UUS B Section 15 Logic 15.3 Logic for group alarm ALMCALH GUID-64EA392C-950F-486C-8D96-6E7736B592BF v1 15.3.1 Identification GUID-64EA392C-950F-486C-8D96-6E7736B592BF v1 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Logic for group alarm ALMCALH 15.3.2 Functionality GUID-16E60E27-F7A8-416D-8648-8174AAC49BB5 v3 The group alarm logic function ALMCALH is used to route several alarm signals to a common indication, LED and/or contact, in the IED.
Page 957
1MRK 502 066-UUS B Section 15 Logic 15.3.7 Technical data GUID-A05AF26F-DC98-4E62-B96B-E75D19F20767 v1 Table 598: Number of ALMCALH instances Function Quantity with cycle time 3 ms 8 ms 100 ms ALMCALH 15.4 Logic for group warning WRNCALH GUID-3EBD3D5B-F506-4557-88D7-DFC0BD21C690 v3 15.4.1 Identification GUID-3EBD3D5B-F506-4557-88D7-DFC0BD21C690 v3 Function description IEC 61850...
Page 958
Section 15 1MRK 502 066-UUS B Logic 15.4.4 Signals PID-4127-INPUTSIGNALS v3 Table 599: WRNCALH Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT1 BOOLEAN Binary input 1 INPUT2 BOOLEAN Binary input 2 INPUT3 BOOLEAN Binary input 3 INPUT4 BOOLEAN Binary input 4...
Page 959
1MRK 502 066-UUS B Section 15 Logic When any one of 16 input signals (INPUT1 to INPUT16) has logical value 1, the WARNING output signal will get logical value 1. The function has a drop-off delay of 200 ms when all inputs are reset to provide a steady signal. INPUT1 WARNING 200 ms...
Page 961
1MRK 502 066-UUS B Section 15 Logic 15.5.5 Settings PID-4128-SETTINGS v4 Table 605: INDCALH Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 15.5.6 Operation principle GUID-72B1B4E8-BC6C-4AF7-8B41-058241B944F8 v2 The logic for group indication INDCALH block is provided with 16 input signals and 1 IND output signal.
Page 962
Section 15 1MRK 502 066-UUS B Logic • GATE function block is used for whether or not a signal should be able to pass from the input to the output. • INVERTER function block that inverts one input signal to the output. •...
Page 963
1MRK 502 066-UUS B Section 15 Logic 15.6.1.2 Signals PID-3437-INPUTSIGNALS v4 Table 607: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 PID-3437-OUTPUTSIGNALS v4 Table 608: AND Output signals Name...
Page 964
Section 15 1MRK 502 066-UUS B Logic PID-3801-OUTPUTSIGNALS v3 Table 611: GATE Output signals Name Type Description BOOLEAN Output from gate 15.6.2.3 Settings PID-3801-SETTINGS v4 Table 612: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled...
Page 965
1MRK 502 066-UUS B Section 15 Logic 15.6.3.3 Technical data GUID-0EC4192A-EF03-47C0-AEC1-09B68B411A98 v1 Table 616: Number of INV instances Logic block Quantity with cycle time 3 ms 8 ms 100 ms 15.6.4 Loop delay function block LLD GUID-05D959B5-A55B-437C-8E8F-831A4A357E24 v2 GUID-64B24094-010D-4B8F-8B7B-DDD49499AAE5 v3 The Logic loop delay function block (LLD) function is used to delay the output signal one execution cycle, that is, the cycle time of the function blocks used.
Page 966
Section 15 1MRK 502 066-UUS B Logic 15.6.5 OR function block OR IP11012-1 v2 M11449-3 v2 The OR function is used to form general combinatory expressions with boolean variables. The OR function block has up to six inputs and two outputs. One of the outputs is inverted. 15.6.5.1 Function block M11448-3 v1...
Page 967
1MRK 502 066-UUS B Section 15 Logic 15.6.6 Pulse timer function block PULSETIMER IP11016-1 v2 M11466-3 v3 The pulse (PULSETIMER) function can be used, for example, for pulse extensions or limiting the operation time of outputs. The PULSETIMER has a settable length. When the input is 1, the output t .
Page 968
Section 15 1MRK 502 066-UUS B Logic 15.6.7 Reset-set with memory function block RSMEMORY GUID-9C93669F-078B-49EA-85B8-C4BB6A434734 v1 GUID-4C804DEA-3C83-4C20-82C6-BAD03BD48242 v4 The Reset-set with memory function block (RSMEMORY) is a flip-flop with memory that can reset or set an output from two inputs respectively. Each RSMEMORY function block has two outputs, where one is inverted.
Page 969
1MRK 502 066-UUS B Section 15 Logic 15.6.7.3 Settings PID-3811-SETTINGS v4 Table 630: RSMEMORY Group settings (basic) Name Values (Range) Unit Step Default Description Memory Disabled Enabled Operating mode of the memory function Enabled 15.6.7.4 Technical data GUID-BE6FD540-E96E-4F15-B2A2-12FFAE6C51DB v1 Table 631: Number of RSMEMORY instances Logic block Quantity with cycle time 3 ms...
Page 970
Section 15 1MRK 502 066-UUS B Logic 15.6.8.2 Signals PID-3813-INPUTSIGNALS v4 Table 633: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset PID-3813-OUTPUTSIGNALS v4 Table 634: SRMEMORY Output signals Name Type Description BOOLEAN Output signal...
Page 971
1MRK 502 066-UUS B Section 15 Logic Input tdelay tdelay IEC08000289-2-en.vsd IEC08000289 V2 EN-US Figure 499: TIMERSET status diagram 15.6.9.1 Function block M11495-3 v3 TIMERSET INPUT IEC04000411-2-en.vsd IEC04000411 V2 EN-US Figure 500: TIMERSET function block 15.6.9.2 Signals PID-3815-INPUTSIGNALS v4 Table 637: TIMERSET Input signals Name Type Default...
Page 972
Section 15 1MRK 502 066-UUS B Logic 15.6.9.3 Settings PID-3815-SETTINGS v4 Table 639: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 0.000 - 0.001 0.000 Delay for settable timer n 90000.000 15.6.9.4 Technical data GUID-C6C98FE0-F559-45EE-B853-464516775417 v1...
Page 973
1MRK 502 066-UUS B Section 15 Logic 15.6.10.2 Signals PID-3817-INPUTSIGNALS v2 Table 642: XOR Input signals Name Type Default Description INPUT1 BOOLEAN Input 1 to XOR gate INPUT2 BOOLEAN Input 2 to XOR gate PID-3817-OUTPUTSIGNALS v2 Table 643: XOR Output signals Name Type Description...
Page 974
Section 15 1MRK 502 066-UUS B Logic quality bit will be set to invalid. The time stamp of an output will be set to the latest time stamp of INPUT and VALID inputs. • INVERTERQT function block that inverts the input signal and propagates the time stamp and the quality of the input signal.
Page 975
1MRK 502 066-UUS B Section 15 Logic PID-3800-INPUTSIGNALS v4 Table 645: ANDQT Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 PID-3800-OUTPUTSIGNALS v4 Table 646: ANDQT Output signals Name Type...
Page 976
Section 15 1MRK 502 066-UUS B Logic 15.7.2.2 Signals GUID-4543C4C9-FAE2-4328-8DE2-4A5756A020E9 v1 PID-3792-INPUTSIGNALS v2 Table 648: INDCOMBSPQT Input signals Name Type Default Description SP_IN BOOLEAN Single point indication TIME GROUP Timestamp SIGNAL BLOCKED BOOLEAN Blocked for update SUBST BOOLEAN Substituted INVALID BOOLEAN Invalid value TEST...
Page 977
1MRK 502 066-UUS B Section 15 Logic 15.7.3.1 Function block GUID-04AA5209-B919-4161-A585-336CE9618A89 v2 INDEXTSPQT SI_IN* SI_OUT TIME BLOCKED SUBST INVALID TEST IEC14000067-1-en.vsd IEC14000067 V1 EN-US Figure 504: INDEXTSPQT function block 15.7.3.2 Signals GUID-4543C4C9-FAE2-4328-8DE2-4A5756A020E9 v1 PID-3821-INPUTSIGNALS v2 Table 651: INDEXTSPQT Input signals Name Type Default...
Page 978
Section 15 1MRK 502 066-UUS B Logic INVALIDQT can propagate the quality, the value and the time stamps of the signals via IEC61850. 15.7.4.1 Function block GUID-0BD84306-0965-4702-8D5C-9570A70168EA v1 INVALIDQT INPUT1 OUTPUT1 INPUT2 OUTPUT2 INPUT3 OUTPUT3 INPUT4 OUTPUT4 INPUT5 OUTPUT5 INPUT6 OUTPUT6 INPUT7 OUTPUT7...
Page 980
Section 15 1MRK 502 066-UUS B Logic 15.7.5.2 Signals GUID-4543C4C9-FAE2-4328-8DE2-4A5756A020E9 v1 PID-3804-INPUTSIGNALS v4 Table 657: INVERTERQT Input signals Name Type Default Description INPUT BOOLEAN Input signal PID-3804-OUTPUTSIGNALS v4 Table 658: INVERTERQT Output signals Name Type Description BOOLEAN Output signal 15.7.5.3 Technical data GUID-F25B94C6-9CC9-48A0-A7A3-47627D2B56E2 v1 Table 659: Number of INVERTERQT instances...
Page 981
1MRK 502 066-UUS B Section 15 Logic PID-3807-INPUTSIGNALS v4 Table 660: ORQT Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 INPUT5 BOOLEAN Input signal 5 INPUT6 BOOLEAN...
Page 982
Section 15 1MRK 502 066-UUS B Logic 15.7.7.1 Function block GUID-C0490ECF-5C4E-4F17-B628-482694C590D2 v1 PULSETIMERQT INPUT IEC15000145.vsd IEC15000145 V1 EN-US Figure 508: PULSETIMERQT function block 15.7.7.2 Signals GUID-4543C4C9-FAE2-4328-8DE2-4A5756A020E9 v1 PID-3810-INPUTSIGNALS v4 Table 663: PULSETIMERQT Input signals Name Type Default Description INPUT BOOLEAN Input signal PID-3810-OUTPUTSIGNALS v4 Table 664: PULSETIMERQT Output signals...
Page 983
1MRK 502 066-UUS B Section 15 Logic RSMEMORYQT can propagate the quality, the value and the time stamps of the signals via IEC61850. Table 667: Truth table for RSMEMORYQT function block RESET NOUT Last Inverted last value value 15.7.8.1 Function block GUID-BDBFD8BA-9253-4277-96D8-0FF7EE93B56E v1 RSMEMORYQT RESET...
Page 984
Section 15 1MRK 502 066-UUS B Logic 15.7.8.4 Technical data GUID-94C803B4-6C5A-4072-AB5C-20DDE98C9A70 v1 Table 671: Number of RSMEMORYQT instances Logic block Quantity with cycle time 3 ms 8 ms 100 ms RSMEMORYQT 15.7.9 Set/Reset function block SRMEMORYQT GUID-D910BA2D-07FA-44C5-A820-E0413AD7FD91 v2 GUID-39060D4B-9AA7-4505-9487-88B2CBC534F0 v4 The Set-reset function (SRMEMORYQT) is a flip-flop with memory that can set or reset an output from two inputs respectively.
Page 985
1MRK 502 066-UUS B Section 15 Logic PID-3814-OUTPUTSIGNALS v4 Table 674: SRMEMORYQT Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal 15.7.9.3 Settings PID-3814-SETTINGS v4 Table 675: SRMEMORYQT Group settings (basic) Name Values (Range) Unit Step Default Description Memory...
Page 986
Section 15 1MRK 502 066-UUS B Logic PID-3816-INPUTSIGNALS v4 Table 677: TIMERSETQT Input signals Name Type Default Description INPUT BOOLEAN Input signal PID-3816-OUTPUTSIGNALS v4 Table 678: TIMERSETQT Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed 15.7.10.3 Settings PID-3816-SETTINGS v4...
Page 987
1MRK 502 066-UUS B Section 15 Logic XORQT can propagate the quality, value and time stamps of the signals via IEC61850. 15.7.11.1 Function block GUID-A685524C-DF12-4BA8-A29C-A027CEAC75E5 v2 XORQT INPUT1 INPUT2 NOUT IEC09000300-1-en.vsd IEC09000300 V1 EN-US Figure 512: XORQT function block 15.7.11.2 Signals GUID-4543C4C9-FAE2-4328-8DE2-4A5756A020E9 v1 PID-3818-INPUTSIGNALS v4...
Page 988
Section 15 1MRK 502 066-UUS B Logic GUID-19810098-1820-4765-8F0B-7D585FFC0C78 v6 Table 685: Number of instances in the extension logic package Logic block Quantity with cycle time 3 ms 8 ms 100 ms GATE PULSETIMER SLGAPC SRMEMORY TIMERSET VSGAPC 15.9 Fixed signals FXDSIGN 15.9.1 Identification SEMOD167904-2 v2...
Page 989
1MRK 502 066-UUS B Section 15 Logic 15.9.3 Function block SEMOD54909-4 v4 FXDSIGN INTZERO INTONE INTALONE REALZERO STRNULL ZEROSMPL GRP_OFF IEC05000445-3-en.vsd IEC05000445 V3 EN-US Figure 513: FXDSIGN function block 15.9.4 Signals PID-6191-OUTPUTSIGNALS v4 Table 686: FXDSIGN Output signals Name Type Description BOOLEAN Boolean signal fixed off...
Page 990
Section 15 1MRK 502 066-UUS B Logic • STRNULL is a string, fixed to an empty string (null) value • ZEROSMPL is a channel index, fixed to 0 value • GRP_OFF is a group signal, fixed to 0 value 15.10 Boolean 16 to Integer conversion B16I SEMOD175715-1 v1 15.10.1...
Page 992
Section 15 1MRK 502 066-UUS B Logic The sum of the value on each INx corresponds to the integer presented on the output OUT on the function block B16I Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 1...
Page 993
1MRK 502 066-UUS B Section 15 Logic 15.11.1 Identification SEMOD175757-2 v5 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Boolean to integer conversion with BTIGAPC logical node representation, 16 bit 15.11.2 Functionality SEMOD175781-4 v8 Boolean to integer conversion with logical node representation, 16 bit (BTIGAPC) is used to transform a set of 16 boolean (logical) signals into an integer.
Page 995
1MRK 502 066-UUS B Section 15 Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 1 BOOLEAN Input 2 BOOLEAN Input 3 BOOLEAN Input 4 BOOLEAN Input 5 BOOLEAN Input 6 BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN...
Page 996
Section 15 1MRK 502 066-UUS B Logic 15.12.2 Functionality SEMOD158373-5 v5 Integer to boolean 16 conversion function IB16 is used to transform an integer into a set of 16 binary (logical) signals. 15.12.3 Function block SEMOD158389-4 v4 IB16 BLOCK OUT1 OUT2 OUT3 OUT4...
Page 997
1MRK 502 066-UUS B Section 15 Logic Name Type Description OUT11 BOOLEAN Output 11 OUT12 BOOLEAN Output 12 OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 15.12.5 Setting parameters ABBD8E242451 v3 The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 15.12.6 Operation principle...
Page 998
Section 15 1MRK 502 066-UUS B Logic Name of OUTx Type Description Value when activated Value when deactivated OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8 BOOLEAN Output 8 OUT9 BOOLEAN Output 9 OUT10 BOOLEAN Output 10 OUT11 BOOLEAN Output 11 1024 OUT12...
Page 999
1MRK 502 066-UUS B Section 15 Logic 15.13.2 Functionality SEMOD158421-5 v8 Integer to boolean conversion with logic node representation function ITBGAPC is used to transform an integer which is transmitted over IEC 61850 and received by the function to 16 binary coded (logic) output signals.
Page 1001
1MRK 502 066-UUS B Section 15 Logic Table 700: Outputs and their values when activated Name of OUTx Type Description Value when activated Value when deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN...
Page 1002
Section 15 1MRK 502 066-UUS B Logic 15.14.1 Identification GUID-C565D235-A935-4405-839D-AAF98E6CB85F v3 Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse integrator TIGAPC 15.14.2 Functionality GUID-FF3CBB22-0089-4BA0-BFE3-FD0E5BA96490 v2 The integrator function TIGAPC integrates input pulses and compares the integrated time with a settable time delay to operate.
Page 1003
1MRK 502 066-UUS B Section 15 Logic 15.14.6 Operation principle GUID-62FB35B1-488D-4927-B050-E3967ADFF670 v3 In the pulse integrator TIGAPC, the time during which the input is high is integrated. This means there is no output until the sum of the input pulses equals the set time delay to operate. The output is deactivated when the input signal is FALSE and the time delay to reset has elapsed.
Page 1004
Section 15 1MRK 502 066-UUS B Logic t Reset t Reset t Reset t int t Delay Integration IEC13000177-2-en.vsd IEC13000177 V2 EN-US Figure 522: The next IN pulse is received before t has elapsed. Sufficient time during the Reset pulses is accumulated to reach t .
Page 1005
1MRK 502 066-UUS B Section 15 Logic 15.15.2 Functionality GUID-390D7433-0C1C-48B4-9A90-71AA148C3C35 v3 Elapsed Time Integrator (TEIGAPC) function is a function that accumulates the elapsed time when a given binary signal has been high, see also Figure 523. BLOCK RESET ACCTIME Time Integration with Retain OVERFLOW a>b...
Page 1006
Section 15 1MRK 502 066-UUS B Logic PID-4047-OUTPUTSIGNALS v5 Table 708: TEIGAPC Output signals Name Type Description WARNING BOOLEAN Indicator of the integrated time has reached the warning limit ALARM BOOLEAN Indicator of the integrated time has reached the alarm limit OVERFLOW BOOLEAN Indicator of the integrated time has reached the overflow limit...